
191

Unit-3: Drawing and Working
with Animation

Unit Structure

3.0. Learning Objectives

3.1. Introduction

3.2. Canvas and Paints

3.3. Bitmaps

3.4. Shapes

3.5. Frame by Frame animation

3.6. Tweened Animation

3.7. Let us sum up

3.8. Check your Progress: Possible Answers

3.9. Further Reading

3.10. Assignment

3.11. Activity

3

192

3.0 Learning Objectives

In this unit you will learn about:

 The drawing and animation features built into Android

 Working with Canvas and Paint to draw shapes and text.

 Animation and Types of animation

3.1. Introduction

With Android, we can display images such as PNG and JPG graphics, as well as text

and primitive shapes to the screen. We can paint these items with various colors,

styles, or gradients and modify them using standard image transforms. We can even

animate objects to give the illusion of motion.

3.2 Canvas and Paint

The Canvas class holds the "draw" calls. To draw something, you need 4 basic

components:

1. A Bitmap to hold the pixels,

2. A Canvas to host the draw calls (writing into the bitmap),

3. A drawing primitive (e.g. Rect, Path, text, Bitmap), and

4. A paint (to describe the colors and styles for the drawing).

The android.graphics framework divides drawing into two areas:

 What to draw, handled by Canvas

 How to draw, handled by Paint.

For instance, Canvas provides a method to draw a line, while Paint provides

methods to define that line's color. Canvas has a method to draw a rectangle, while

Paint defines whether to fill that rectangle with a color or leave it empty. Simply put,

Canvas defines shapes that you can draw on the screen, while Paint defines the

color, style, font, and so forth of each shape you draw.

193

So, before you draw anything, you need to create one or more Paint objects. The

PieChart example does this in a method called init, which is called from the

constructor from Java.

private void init() {
 textPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 textPaint.setColor(textColor);
 if (textHeight == 0) {
 textHeight = textPaint.getTextSize();
 } else {
 textPaint.setTextSize(textHeight);
 }

 piePaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 piePaint.setStyle(Paint.Style.FILL);
 piePaint.setTextSize(textHeight);

 shadowPaint = new Paint(0);
 shadowPaint.setColor(0xff101010);
 shadowPaint.setMaskFilter(new BlurMaskFilter(8, BlurMaskFilter.Blur.NORMAL));

 ...

Creating objects ahead of time is an important optimization. Views are redrawn very

frequently, and many drawing objects require expensive initialization. Creating

drawing objects within your onDraw() method significantly reduces performance and

can make your UI appear sluggish.

Once you have your object creation and measuring code defined, you can implement

onDraw(). Every view implements onDraw() differently, but there are some common

operations that most views share:

 Draw text using drawText(). Specify the typeface by calling setTypeface(), and

the text color by calling setColor().

 Draw primitive shapes using drawRect(), drawOval(), and drawArc(). Change

whether the shapes are filled, outlined, or both by calling setStyle().

 Draw more complex shapes using the Path class. Define a shape by adding lines

and curves to a Path object, then draw the shape using drawPath(). Just as with

primitive shapes, paths can be outlined, filled, or both, depending on the

setStyle().

194

 Define gradient fills by creating LinearGradient objects. Call setShader() to use

your LinearGradient on filled shapes.

 Draw bitmaps using drawBitmap().

For example, here's the code that draws PieChart. It uses a mix of text, lines, and

shapes.

protected void onDraw(Canvas canvas) {

 super.onDraw(canvas);

 // Draw the shadow

 canvas.drawOval(shadowBounds, shadowPaint);

 // Draw the label text

 canvas.drawText(data.get(currentItem).mLabel, textX, textY, textPaint);

 // Draw the pie slices

 for (int i = 0; i < data.size(); ++i) {

 Item it = data.get(i);

 piePaint.setShader(it.shader);

 canvas.drawArc(bounds,360 - it.endAngle, it.endAngle - it.startAngle,

 true, piePaint);

 }

 // Draw the pointer

 canvas.drawLine(textX, pointerY, pointerX, pointerY, textPaint);

 canvas.drawCircle(pointerX, pointerY, pointerSize, mTextPaint);

}

3.3 Bitmaps

You can find lots of goodies for working with graphics such as bitmaps in the

android.graphics package. The core class for bitmaps is android.graphics.Bitmap.

195

Drawing Bitmap Graphics on a Canvas

You can draw bitmaps onto a valid Canvas, such as within the onDraw() method of a

View, using one of the drawBitmap() methods. For example, the following code loads

a Bitmap resource and draws it on a canvas:

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

...

Bitmap pic = BitmapFactory.decodeResource(getResources(),

R.drawable.bluejay);

canvas.drawBitmap(pic, 0, 0, null);

Scaling Bitmap Graphics

Perhaps you want to scale your graphic to a smaller size. In this case, you can use

the createScaledBitmap() method, like this:

Bitmap sm = Bitmap.createScaledBitmap(pic, 50, 75, false);

You can preserve the aspect ratio of the Bitmap by checking the getWidth() and

getHeight() methods and scaling appropriately.

3.4 Shapes

You can define and draw primitive shapes such as rectangles and ovals using the

ShapeDrawable class in conjunction with a variety of specialized Shape classes.

You can define Paintable drawables as XML resource files, but more often,

especially with more complex shapes, this is done programmatically.

Defining Shape Drawables as XML Resources

In Unit-5, ―Application Resources‖ of block-3, we show you how to define primitive

shapes such as rectangles using specially formatted XML files within the

/res/drawable/resource directory.

196

The following resource file called /res/drawable/green_rect.xml describes a simple,

green rectangle shape drawable:

<?xml version=‖1.0‖ encoding=‖utf-8‖?>

<shape xmlns:android=―http://schemas.android.com/apk/res/android‖

 android:shape=‖rectangle‖>

 <solid android:color=‖#0f0‖/>

</shape>

You can then load the shape resource and set it as the Drawable as follows:

ImageView iView = (ImageView)findViewById(R.id.ImageView1);

iView.setImageResource(R.drawable.green_rect);

You should note that many Paint properties can be set via XML as part of the Shape

definition. For example, the following Oval shape is defined with a linear gradient

(red to white) and stroke style information:

<?xml version=‖1.0‖ encoding=‖utf-8‖?>

<shape xmlns:android=‖http://schemas.android.com/apk/res/android‖

android:shape=‖oval‖>

<solid android:color=‖#f00‖/>

<gradient android:startColor=‖#f00‖ android:endColor=‖#fff‖ android:angle=‖180‖/>

<stroke android:width=‖3dp‖ android:color=‖#00f‖

 android:dashWidth=‖5dp‖ android:dashGap=‖3dp‖

/>

</shape>

Defining Shape Drawables Programmatically

You can also define this ShapeDrawable instances programmatically. The different

shapes are available as classes within the android.graphics.drawable.shapes

package. For example, you can programmatically define the aforementioned green

rectangle as follows:

197

import android.graphics.drawable.ShapeDrawable;

import android.graphics.drawable.shapes.RectShape;

...

ShapeDrawable rect = new ShapeDrawable(new RectShape());

rect.getPaint().setColor(Color.GREEN);

You can then set the Drawable for the ImageView directly:

ImageView iView = (ImageView)findViewById(R.id.ImageView1);

iView.setImageDrawable(rect);

Drawing Different Shapes

Some of the different shapes available within the android.graphics.drawable.shapes

package include

 Rectangles (and squares)

 Rectangles with rounded corners

 Ovals (and circles)

 Arcs and lines

 Other shapes defined as paths

You can create and use these shapes as Drawable resources directly within

ImageView views, or you can find corresponding methods for creating these primitive

shapes within a Canvas.

Drawing Rectangles and Squares

Drawing rectangles and squares (rectangles with equal height/width values) is simply

a matter of creating a ShapeDrawable from a RectShape object. The RectShape

object has no dimensions but is bound by the container object—in this case, the

ShapeDrawable.

198

You can set some basic properties of the ShapeDrawable, such as the Paint color

and the default size.

For example, here we create a magenta-colored rectangle that is 100-pixels long

and 2-pixels wide, which looks like a straight, horizontal line. We then set the shape

as the drawable for an ImageView so the shape can be displayed:

import android.graphics.drawable.ShapeDrawable;

import android.graphics.drawable.shapes.RectShape;

…

ShapeDrawable rect = new ShapeDrawable(new RectShape());

rect.setIntrinsicHeight(2);

rect.setIntrinsicWidth(100);

rect.getPaint().setColor(Color.MAGENTA);

ImageView iView = (ImageView)findViewById(R.id.ImageView1);

iView.setImageDrawable(rect);

Similarly we can draw other shapes.

3.5 Frame by Frame animation

You can think of frame-by-frame animation as a digital flipbook in which a series of

similar images display on the screen in a sequence, each subtly different from the

last. When you display these images quickly, they give the illusion of movement.

This technique is called frame-by-frame animation and is often used on the Web in

the form of animated GIF images.

Frame-by-frame animation is best used for complicated graphics transformations

that are not easily implemented programmatically.

An object used to create frame-by-frame animations, defined by a series of Drawable

objects, which can be used as a View object's background.

199

The simplest way to create a frame-by-frame animation is to define the animation in

an XML file, placed in the res/drawable/ folder, and set it as the background to a

View object. Then, call start() to run the animation.

An AnimationDrawable defined in XML consists of a single <animation-list> element

and a series of nested <item> tags. Each item defines a frame of the animation. See

the example below.

spin_animation.xml file in res/drawable/ folder:

<animation-list android:id="@+id/selected" android:oneshot="false">

 <item android:drawable="@drawable/wheel0" android:duration="50" />

 <item android:drawable="@drawable/wheel1" android:duration="50" />

 <item android:drawable="@drawable/wheel2" android:duration="50" />

 <item android:drawable="@drawable/wheel3" android:duration="50" />

 <item android:drawable="@drawable/wheel4" android:duration="50" />

 <item android:drawable="@drawable/wheel5" android:duration="50" />

 </animation-list>

Here is the code to load and play this animation.

// Load the ImageView that will host the animation and

// set its background to our AnimationDrawable XML resource.

 ImageView img = (ImageView)findViewById(R.id.spinning_wheel_image);

 img.setBackgroundResource(R.drawable.spin_animation);

 // Get the background, which has been compiled to an AnimationDrawable object.

 AnimationDrawable frameAnimation = (AnimationDrawable) img.getBackground();

 // Start the animation (looped playback by default).

 frameAnimation.start();

200

3.6 Tweened Animation

With tweened animation, you can provide a single Drawable resource - it is a Bitmap

graphic, a ShapeDrawable, a TextView, or any other type of View object—and the

intermediate frames of the animation are rendered by the system. Android provides

tweening support for several common image transformations, including alpha, rotate,

scale, and translate animations. You can apply tweened animation transformations

to any View, whether it is an ImageView with a Bitmap or shape Drawable, or a

layout such as a TableLayout.

Defining Tweening Transformations

You can define tweening transformations as XML resource files or programmatically.

All tweened animations share some common properties, including when to start, how

long to animate, and whether to return to the starting state upon completion.

Defining Tweened Animations as XML Resources

In Unit-5 of Block-3, we showed you how to store animation sequences as specially

formatted XML files within the /res/anim/ resource directory. For example, the

following resource file called /res/anim/spin.xml describes a simple five-second

rotation:

<?xml version=‖1.0‖ encoding=‖utf-8‖ ?>

<set xmlns:android= ―http://schemas.android.com/apk/res/android‖

 android:shareInterpolator=‖false‖>

<rotate android:fromDegrees=‖0‖

 android:toDegrees=‖360‖

 android:pivotX=‖50%‖

 android:pivotY=‖50%‖

 android:duration=‖5000‖ />

</set>

Defining Tweened Animations Programmatically

201

You can programmatically define these animations.The different types of

transformations are available as classes within the android.view.animation package.

For example, you can define the aforementioned rotation animation as follows:

import android.view.animation.RotateAnimation;

...

RotateAnimation rotate = new RotateAnimation(0, 360,

 RotateAnimation.RELATIVE_TO_SELF, 0.5f,

 RotateAnimation.RELATIVE_TO_SELF, 0.5f);

rotate.setDuration(5000);

Defining Simultaneous and Sequential Tweened Animations

Animation transformations can happen simultaneously or sequentially when you set

the startOffset and duration properties, which control when and for how long an

animation takes to complete. You can combine animations into the <set> tag

(programmatically, using AnimationSet) to share properties.

For example, the following animation resource file /res/anim/grow.xml includes a set

of two scale animations: First, we take 2.5 seconds to double in size, and then at 2.5

seconds, we start a second animation to shrink back to our starting size:

<?xml version=‖1.0‖ encoding=‖utf-8‖ ?>

<set xmlns:android=http://schemas.android.com/apk/res/android

 android:shareInterpolator=‖false‖>

<scale android:pivotX=‖50%‖

 android:pivotY=‖50%‖

android:fromXScale=‖1.0‖

android:fromYScale=‖1.0‖

android:toXScale=‖2.0‖

android:toYScale=‖2.0‖

android:duration=‖2500‖ />

<scale

202

android:startOffset=‖2500‖

android:duration=‖2500‖

android:pivotX=‖50%‖

android:pivotY=‖50%‖

android:fromXScale=‖1.0‖

android:fromYScale=‖1.0‖

android:toXScale=‖0.5‖

android:toYScale=‖0.5‖ />

</set>

Loading Animations

Loading animations is made simple by using the AnimationUtils helper class.The

following code loads an animation XML resource file called /res/anim/grow.xml and

applies it to an ImageView whose source resource is a green rectangle shape

drawable:

import android.view.animation.Animation;

import android.view.animation.AnimationUtils;

...

ImageView iView = (ImageView)findViewById(R.id.ImageView1);

iView.setImageResource(R.drawable.green_rect);

Animation an = AnimationUtils.loadAnimation(this, R.anim.grow);

iView.startAnimation(an);

We can listen for Animation events, including the animation start, end, and repeat

events, by implementing an AnimationListener class, such as the MyListener class

shown here:

class MyListener implements Animation.AnimationListener {

public void onAnimationEnd(Animation animation) {

// Do at end of animation

}

public void onAnimationRepeat(Animation animation) {

// Do each time the animation loops

203

}

public void onAnimationStart(Animation animation) {

// Do at start of animation

}

}

You can then register your AnimationListener as follows:

an.setAnimationListener(new MyListener());

Now let‘s look at each of the four types of tweening transformations individually.

These types are:

 Transparency changes (Alpha)

 Rotations (Rotate)

 Scaling (Scale)

 Movement (Translate)

Working with Alpha Transparency Transformations

Transparency is controlled using Alpha transformations. Alpha transformations can

be used to fade objects in and out of view or to layer them on the screen.

Alpha values range from 0.0 (fully transparent or invisible) to 1.0 (fully opaque or

visible). Alpha animations involve a starting transparency (fromAlpha) and an ending

transparency (toAlpha).

The following XML resource file excerpt defines a transparency-change animation,

taking five seconds to fade in from fully transparent to fully opaque:

<alpha android:fromAlpha=‖0.0‖

android:toAlpha=‖1.0‖

android:duration=‖5000‖>

</alpha>

Programmatically, you can create this same animation using the AlphaAnimation

class within the android.view.animation package.

204

Working with Rotating Transformations

You can use rotation operations to spin objects clockwise or counterclockwise

around a pivot point within the object‘s boundaries.

Rotations are defined in terms of degrees. For example, you might want an object to

make one complete clockwise rotation. To do this, you set the fromDegrees property

to 0 and the toDegrees property to 360. To rotate the object counterclockwise

instead, you set the toDegrees property to -360.

By default, the object pivots around the (0,0) coordinate, or the top-left corner of the

object. This is great for rotations such as those of a clock‘s hands, but much of the

time, you want to pivot from the center of the object; you can do this easily by setting

the pivot point, which can be a fixed coordinate or a percentage.

The following XML resource file excerpt defines a rotation animation, taking five

seconds to make one full clockwise rotation, pivoting from the center of the object:

<rotate android:fromDegrees=‖0‖

android:toDegrees=‖360‖

android:pivotX=‖50%‖

android:pivotY=‖50%‖

android:duration=‖5000‖ />

Programmatically, you can create this same animation using the RotateAnimation

class within the android.view.animation package.

Working with Scaling Transformations

You can use scaling operations to stretch objects vertically and horizontally. Scaling

operations are defined as relative scales.Think of the scale value of 1.0 as 100

percent, or fullsize. To scale to half-size, or 50 percent, set the target scale value of

0.5. You can scale horizontally and vertically on different scales or on the same

scale (to preserve aspect ratio).You need to set four values for proper scaling:

205

starting scale (fromXScale, fromYScale) and target scale (toXScale, toYScale).

Again, you can use a pivot point to stretch your object from a specific (x,y)

coordinate such as the center or another coordinate.

The following XML resource file excerpt defines a scaling animation, taking five

seconds to double an object‘s size, pivoting from the center of the object:

<scale android:pivotX=‖50%‖

 android:pivotY=‖50%‖

 android:fromXScale=‖1.0‖

 android:fromYScale=‖1.0‖

 android:toXScale=‖2.0‖

 android:toYScale=‖2.0‖

 android:duration=‖5000‖ />

Programmatically, you can create this same animation using the ScaleAnimation

class within the android.view.animation package.

Working with Moving Transformations

You can move objects around using translate operations.Translate operations move

an object from one position on the (x,y) coordinate to another coordinate.

To perform a translate operation, you must specify the change, or delta, in the

object‘s coordinates. You can set four values for translations: starting position

(fromXDelta, fromYDelta) and relative target location (toXDelta, toYDelta).

The following XML resource file excerpt defines a translate animation, taking 5

seconds to move an object up (negative) by 100 on the y-axis.We also set the

fillAfter property to be true, so the object doesn‘t ―jump‖ back to its starting position

when the animation finishes:

<translate android:toYDelta=‖-100‖

android:fillAfter=‖true‖

android:duration=‖2500‖ />

206

Programmatically, you can create this same animation using the TranslateAnimation

class within the android.view.animation package.

Check your progress-1

a) You can define and draw primitive shapes such as rectangles and ovals using the

__________ class.

b) What to draw, handled by ___________.

c) How to draw, handled by ____________.

d) We can draw text on canvas using__________ method.

e) ___________animation is best used for complicated graphics transformations

that are not easily implemented programmatically

(A) Frame-by-Frame (B) Tweened (C) Either (A) or (B) (D) None of these

f) Which of the following is a tweening transformation?

(A) Rotate (B) Scale (C) Translate (C) All of these

3.7 Let’s sum up

The Android SDK comes with the android.graphics package, which includes powerful

classes for drawing graphics and text to the screen in a variety of different ways.

Some features of the graphics library include Bitmap graphics utilities, Typeface and

font style support, Paint colors and styles, different types of gradients, and a variety

of primitive and not-so-primitive shapes that can be drawn to the screen and even

animated using tweening and frame-by-frame animation mechanisms.

3.8. Check your Progress: Possible Answers

1-a) ShapeDrawable 1-b) Canvas 1-c) Paint

1-d) drawText() 1-e) (A) Frame-by-Frame 1-f) (D) All of these

