
56

Unit-2: Android Project
Structure and Basics

Unit Structure

2.0 Learning Objectives

2.1 Introduction

2.2 Android Project Structure

2.3 Android Project Files

2.4 Android Application Modules

2.5 Types of Modules

2.6 Project structure settings

2.7 Anatomy of an Android Application

2.8 Important Android Terminology

2.9 Basic Android API Packages

2.10 Android Advanced API Packages

2.11 Let us sum up

2.12 Check your Progress: Possible Answers

2.13 Further Reading

2.14 Assignment

2

57

2.0 Learning Objectives

After studying this unit student should be able to:

 Know the structure of Android Project

 List the various types of Android Project files

 Define Android application modules

 Enumerate the types of modules

 Modify project structure setting

 Understand anatomy of an android application

 Know basic and advanced Android API

2.1 Introduction

The Android build system is organized around a specific directory tree structure for

the Android project, similar to the any Java project. The project prepares the actual

application that will run on the device or emulator. When you create a new Android

project, you get several items in the project‘s root directory which is discussed in sub

sequent sections.

When you create an Android project as discussed in previous unit, you provide the

fully-qualified class name of the ―main‖ activity for the application (e.g.,

edu.baou.HelloWorld).

You will then find that your project‘s src/ tree already has the namespace directory

tree in place, plus a stub Activity subclass representing your main activity (e.g.,

src/edu/baou/HelloWorld.java). You can modify this file and add others to the src/

tree as per requirement implement your application.

When you compile the project for first time, in the ―main‖ activity‘s namespace

directory, the Android build chain will create R.java. This contains a number of

constants tied to the various resources you placed out in the res/ directory tree. You

should not modify R.java yourself, letting the Android tools handle it for you. You will

see throughout many of the samples where we reference things in R.java (e.g.,

referring to a layout‘s identifier via R.layout.main).

58

2.2 Android Project Structure

An Android project contains everything that defines your Android app. The SDK tools

require that your projects follow a specific structure so it can compile and package

your application correctly. Android Studio takes care of all this for you.

A module is the first level of control within a project that encapsulates specific types

of source code files and resources. There are several types of modules with a

project:

Module Description

Android

Application

Modules

It contain source code, resource files, and application level

settings, such as the module-level build file, resource files, and

Android Manifest file.

Test Modules It contains code to test your application projects and is built into

test applications that run on a device.

Library

Modules

It contains shareable Android source code and resources that you

can reference in Android projects. This is useful when you have

common code that you want to reuse.

App Engine

Modules

They are App Engine java Servlet Module for backend

development, App Engine java Endpoints Module to convert

server-side Java code annotations into RESTful backend APIs,

and App Engine Backend with Google Cloud Messaging to send

push notifications from your server to your Android devices.

Table-4

When you use the Android development tools to create a new project and the

module, the essential files and folders will be created for you. As your application

grows in complexity, you might require new kinds of resources, directories, and files.

2.3 Android Project Files

59

Android Studio project files and settings provide project-wide settings that apply

across all modules in the project.

Figure-43

File Meaning

.idea Directory for IntelliJ IDEA settings.

App Application module directories and files.

Build This directory stores the build output for all project modules.

Gradle Contains the gradler-wrapper files.

.gitignore Specifies the untracked files that Git should ignore.

build.gradle Customizable properties for the build system.

gradle.properties Project-wide Gradle settings.

gradlew Gradle startup script for Unix.

gradlew.bat Gradle startup script for Windows.

local.properties Customizable computer-specific properties for the build system,

such as the path to the SDK installation.

.iml Module file created by the IntelliJ IDEA to store module

information.

settings.gradle Specifies the sub-projects to build.

Table-5

Check your progress-1

a) _________contains shareable Android source code and resources that you can

60

reference in Android projects.

b) _________ contain source code, resource files, and application level settings,

such as the module-level build file, resource files, and Android Manifest file.

c) When you compile the project for first time, in the ―main‖ activity‘s namespace

directory, the Android build chain will create _________

2.4 Android Application Modules

Android Application Modules contain things such as application source code and

resource files. Most code and resource files are generated for you by default, while

others should be created if required. The following directories and files comprise an

Android application module:

Figure-44

File Meaning

build/ Contains build folders for the specified build variants. Stored in the

61

File Meaning

 main application module.

libs/ Contains private libraries. Stored in the main application module.

src/ Contains your stub Activity file, which is stored at

src/main/java/<ActivityName>.java. All other source code files

(such as .java or .aidl files) go here as well.

androidTest/ Contains the instrumentation tests.

main/jni/ Contains native code using the Java Native Interface (JNI).

main/gen/ Contains the Java files generated by Android Studio, such as your

R.java file and interfaces created from AIDL files.

main/assets/ This is empty. You can use it to store raw asset files. For example,

this is a good location for textures and game data. Files that you

save here are compiled into an .apk file as-is, and the original

filename is preserved. You can navigate this directory and read

files as a stream of bytes using the AssetManager.

main/res/ Contains application resources, such as drawable files, layout files,

and string values in the following directories.

anim/ For XML files that are compiled into animation objects.

color/ For XML files that describe colors.

drawable/ For bitmap files (PNG, JPEG, or GIF), 9-Patch image files, and

XML files that describe Drawable shapes or Drawable objects that

contain multiple states (normal, pressed, or focused).

mipmap/ For app launcher icons. The Android system retains the resources

in this folder (and density-specific folders such as mipmap-

xxxhdpi) regardless of the screen resolution of the device where

your app is installed. This behavior allows launcher apps to pick

the best resolution icon for your app to display on the home

screen.

layout/

XML files that are compiled into screen layouts (or part of a

screen).

menu/ For XML files that define application menus.

raw/ For arbitrary raw asset files. Saving asset files here is essentially

62

File Meaning

the same as saving them in the assets/ directory. The only

difference is how you access them. These files are processed by

aapt and must be referenced from the application using a resource

identifier in the R class. For example, this is a good place for

media, such as MP3 or Ogg files.

values/ For XML files that define resources by XML element type. Unlike

other resources in the res/ directory, resources written to XML files

in this folder are not referenced by the file name. Instead, the XML

element type controls how the resources defined within the XML

files are placed into the R class.

xml/ For miscellaneous XML files that configure application

components. For example, an XML file that defines a

PreferenceScreen, AppWidgetProviderInfo, or Searchability

Metadata.

AndroidManife

st.xml

The control file that describes the nature of the application and

each of its components. For instance, it describes: certain qualities

about the activities, services, intent receivers, and content

providers; what permissions are requested; what external libraries

are needed; what device features are required, what API Levels

are supported or required; and others.

.gitignore/ Specifies the untracked files ignored by git.

app.iml/ IntelliJ IDEA module

build.gradle Customizable properties for the build system. You can edit this file

to override default build settings used by the manifest file and also

set the location of your keystore and key alias so that the build

tools can sign your application when building in release mode. This

file is integral to the project, so maintain it in a source revision

control system.

proguard-

rules.pro

ProGuard settings file.

Table-6

63

2.5 Types of Modules

Android Studio offers a few distinct types of module:

Android app module: It provides a container for your app's source code, resource

files, and app level settings such as the module-level build file and Android Manifest

file. When you create a new project, the default module name is "app". In the Create

New Module window, Android Studio offers the following types of app modules:

 Phone & Tablet Module

 Wear OS Module

 Android TV Module

 Glass Module

They each provide essential files and some code templates that are appropriate for

the corresponding app or device type.

Dynamic feature module: It denotes a modularized feature of your app that can

take advantage of Google Play's Dynamic Delivery. For example, with dynamic

feature modules, you can provide your users with certain features of your app on-

demand or as instant experiences through Google Play Instant.

Library module: It provides a container for your reusable code, which you can use

as a dependency in other app modules or import into other projects. Structurally, a

library module is the same as an app module, but when built, it creates a code

archive file instead of an APK, so it can't be installed on a device.

In the Create New Module window, Android Studio offers the following library

modules:

 Android Library: This type of library can hold all file types supported in an

Android project, including source code, resources, and manifest files. The

build result is an Android Archive file or AAR file that can be added as a

dependency for your Android app modules.

https://developer.android.com/topic/google-play-instant/overview

64

 Java Library: This type of library can contain only Java source files. The build

result is a Java Archive or JAR file that can be added as a dependency for

your Android app modules or other Java projects.

Google Cloud module: it provides a container for your Google Cloud back end

code. It has the required code and dependencies for a Java App Engine back end

that uses HTTP, Cloud Endpoints, and Cloud Messaging to connect to your app. You

can develop your back end to provide cloud services need by your app.

2.6 Project structure settings

To change various settings for your Android Studio project, open the project

structure dialog by clicking File  Project Structure. It contains the following

sections:

 SDK Location: Sets the location of the JDK, Android SDK, and Android NDK

that your project uses.

 Project: Sets the version for Gradle and the Android plugin for Gradle, and

the repository location name.

 Developer Services: Contains settings for Android Studio add-in components

from Google or other third parties. See Developer Services, below.

 Modules: Allows you to edit module-specific build configurations, including

the target and minimum SDK, the app signature, and library dependencies.

2.7 Anatomy of an Android Application

Generally a program is defined in terms of functionality and data, and an Android

application is not an exception. It performs processing, show information on the

screen, and takes data from a variety of sources.

To Develop Android applications for mobile devices with resource constraint requires

a systematic understanding of the application lifecycle. Important terminology for

application building blocks terms are Context, Activity, and Intent. This section

introduces you with the most important components of Android applications and

65

provides you with a more detailed understanding of how Android applications

function and interact with one another.

2.8 Important Android Terminology

The followings are the important terminology used in Android application

development.

 Context: The context is the essential command for an Android application. It

stores the current state of the application/object and all application related

functionality can be accessed through the context. Typically you call it to get

information regarding another part of your program such as an activity, package,

and application.

 Activity: It is core to any Android application. An Android application is a

collection of tasks, each of which is called an Activity. Each Activity within an

application has an exclusive task or purpose. Typically, applications have one or

more activities, and the main objective of an activity is to interact with the user.

 Intent: Intent is a messaging object which can be used to request an action from

another app component. Each request is packaged as Intent. You can think of

each such request as a message stating intent to do something. Intent mainly

used for three tasks 1) to start an activity, 2) to start a service and 3) to deliver a

broadcast.

 Service: Tasks that do not require user interaction can be encapsulated in a

service. A service is most useful when the operations are lengthy (offloading

time-consuming processing) or need to be done regularly (such as checking a

server for new mail).

2.9 Basic Android API Packages

Application program interface (API) is a set of routines, protocols, and tools for

building software applications. An API specifies how software components should

interact and APIs are used when programming graphical user interface (GUI)

components. Android offers a number of APIs for developing your applications. The

66

following list of core APIs should provide an insight into what‘s available; all Android

devices will offer support for at least these APIs:

API Package Use

android.util Provides common utility methods such as date/time

manipulation, base64 encoders and decoders, string and

number conversion methods, and XML utilities.

android.os Provides basic operating system services, message passing,

and inter-process communication on the device.

android.graphics Provides low level graphics tools such as canvases, color filters,

points, and rectangles that let you handle drawing to the screen

directly.

android.text Provides classes used to render or track text and text spans on

the screen.

android.database Contains classes to explore data returned through a content

provider.

android.content Contains classes for accessing and publishing data on a device.

android.view Provides classes that expose basic user interface classes that

handle screen layout and interaction with the user.

android.widget The widget package contains (mostly visual) UI elements to use

on your Application screen.

android.app Contains high-level classes encapsulating the overall Android

application model.

android.provider Provides convenience classes to access the content providers

supplied by Android.

android.webkit Provides tools for browsing the web.

Table-7

2.10 Advanced Android API Packages

The core libraries provide all the functionality you need to start creating applications

for Android, but it won‘t be long before you‘re ready to delve into the advanced APIs

that offer the really exciting functionality.

67

Android hopes to target a wide range of mobile hardware, so be aware that the

suitability and implementation of the following APIs will vary depending on the device

upon which they are implemented.

API Package Use

android.location Contains the framework API classes that define Android

location-based and related services.

android.media Provides classes that manage various media interfaces in

audio and video.

android.opengl Provides an OpenGL ES static interface and utilities.

android.hardware Provides support for hardware features, such as the camera

and other sensors.

android.bluetooth Provides classes that manage Bluetooth functionality, such as

scanning for devices, connecting with devices, and managing

data transfer between devices. The Bluetooth API supports

both "Classic Bluetooth" and Bluetooth Low Energy.

android.net.wifi Provides classes to manage Wi-Fi functionality on the device.

android.telephony Provides APIs for monitoring the basic phone information, such

as the network type and connection state, plus utilities for

manipulating phone number strings.

Table-8

Check your progress-2

a) All application related functionality can be accessed through the ________

b) _____ Package provide classes that manage various media interfaces in audio

and video.

c) Tasks that do not require user interaction can be encapsulated in a _______.

d) Application Program Interface is a set of routines, protocols, and tools for building

software applications (True/False)

e) Service is a messaging object which can be used to request an action from

another app component. (True/False)

f) An Android application is a collection of tasks, each of which is called an Activity

(True/False)

68

2.11 Let us sum up

In this unit you have lean about the structure of Android Project, various types of

Android Project files, Android application modules and understand anatomy of an

android application. You have also learnt about basic and advanced Application

Program Interface.

2.12 Check your Progress: Possible Answers

1-a) Library Modules 1-b) Android Application Modules 1-c) R.java

2-a) Context 2-b) android.media 2-c) Service

2-d) True 2-e) False 2-f) True

2.13 Further Reading

 https://developer.android.com/studio/projects

2.14 Assignment

 Explain Android Project Structure

 Write detailed note on basic and advanced API packages

 Define: Activity, Service, Context, Intent

