

201

Unit 3: Introduction of Exception

Unit Structure

3.1 Learning Objectives

3.2 Introduction

3.3 Error

3.4 Hierarchy of Exception classes

3.5 Types of Exceptions

3.6 Uncaught Exception

3.7 Handling Exception

3.8 try with multiple catch

3.9 Nested try...catch...finally block

3.10 Let us sum up

3.11 Check your Progress

3.12 Check your Progress: Possible Answers

3.13 Further Reading

3.14 Assignments

3

202

3.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

 Study various types of errors while programming.

 Understand need of Error handling in java.

 Study various mechanisms to handle error and exceptions.

 Understand the types of exception

 Use exception handling mechanism using try ... catch, try with multiple catch

and nested catch.

3.2 INTRODUCTION

 An exception is an unwanted or unexpected event occurs during the

execution of the program. Exception occurs at run time which disturbs the flow of

execution program instructions. The java program terminates abnormally due to

exception. It is not recommended therefore these exceptions are to be handled in

our program. These exceptions are caused by error in data input, by programmer

error, and by physical resources that have failed during execution of program.

3.3 ERROR

 Error is unexpected event occur which stops program from compiling or

executing. The programmer should know that there are very less chances that a

program will run perfectly in first attempt. Though programmer has did nice designing

and proper care has been taken while coding we can never predict the execution of

program error free. The programmer must perform systematic effort to detect and

rectify the errors present in the program. For this effort all programmer should know

what types of error may present in the program.

3.3.1 TYPES OF ERRORS IN PROGRAMMING

The error can be classified into four categories as listed below.

1. syntax errors

2. logical errors

3. run-time errors

203

4. latent errors

 Syntax Errors

 Each programming language has a rules to write a program. The violation of

these rules and poor understanding of the programming language results in syntax

errors. The syntax errors are detected by the compiler. If program has any syntax

error compilation of program fails and it lists the syntax error with line number where

syntax error is occurred.

For example,

public class ExErr

{

public static void main (String args[])

{

int a=10

int b=20

System. out. println (a + b);

}

}

In above program line 5 and 6 of the program doesn‘t have semicolon at the end

hence the compiler will show us errors.

Figure-67 Output of program

 Run-time Errors

 These error are not detected by compiler. They are the errors that occur

during the execution of the program. For example, dividing by zero error, insufficient

memory for dynamic memory allocation, referencing an out-of-range array element

etc. A program with these kinds of errors will run but produce erroneous results or

204

may cause abnormal termination of program. Detection and removal of a run-time

error is a very difficult task.

public class ExErr

{

public static void main (String args[]) throws Exception

{

int a[] = { 10, 23, 85, 52 };

System. out. println (a[10]);

}

}

Figure-68 Output of program

 Logical Errors

 These errors are related to the logic of the program. Logical errors are also

not detected by compiler and cause incorrect results. These errors occur due to

incorrect translation of algorithm into the program, poor understanding of the

problem and a lack of clarity of hierarchy of operators. Logic errors occur when there

is a design flaw in your program. Common examples are:

 Multiplying when you should be dividing

 Adding when you should be subtracting

 Opening and using data from the wrong file

 Displaying the wrong message

 Latent Errors

 Latent Errors are the ‗hidden‘ errors that occur only when a particular set of

data is used. Such errors can be detected only by using all possible combinations of

data.

For example,

205

import java.util.Scanner;

public class ExErr

{

public static void main (String args[])

{

int a[] = { 10, 23, 85, 52 };

System. out. println (" Enter Index : ");

Scanner sc = new Scanner (System.in);

int i = sc.nextInt();

System. out. println (a[i]);

}

}

Figure-69 Output of program

An error occurs only when we input value of i more than 4.

3.4 HIERARCHY OF EXCEPTION AND ERROR CLASS

 All exception and errors types are sub classes of class Throwable, which is

base class of the hierarchy. The class Exception is a subclass of Throwable class.

This class is used for exceptional conditions that user programs should catch. Mainly

they are used to handle runtime error, logical errors and latent errors. The

NullPointerException is an example of such an exception which is a subclass of

Exception class. The class Error is also derived from Throwable class which is used

by the Java virtual machine (JVM) to indicate errors. StackOverflowError is an

example of such an error class which is derived from the Error class.

206

Figure-70 Hierarchy of exception class and error class

3.5 TYPES OF EXCEPTIONS

 There are mainly two types of exceptions: checked and unchecked. An error

is considered as the unchecked exception.

1) Checked Exception

 All the classes which extend the Throwable class except RuntimeException

and Error are known as checked exceptions for example, IOException,

SQLException etc. Checked exceptions are checked and raised at compile-time. The

check exceptions are forced to be checked and handled using try…catch block or

declare it in function header using throws keyword in java program.

Throwable

Error Exception

StackOverflowError

VirtualMachineError

OutOfMemoryError

IOException

SQLException

ClassNotFoundExceptio
n

RuntimeException

ArithmeticException

NumberFormatExceptio
n

IndexOutOfBoundExceptio
n

NullPointerException

207

import java.io.File;

import java.io.FileReader;

public class ExErr {

 public static void main(String args[]) {

 File file = new File (―E://file.txt");

 FileReader fr = new FileReader (file);

 }

}

Figure-71 Output of program

 The Compile time error as we have not handled check exception

FileNotFoundException in our program. The error can be solved using following

code,

import java.io.File;

import java.io.FileReader;

public class ExErr {

 public static void main(String args[]) throws Exception {

 File file = new File("E://file.txt");

 FileReader fr = new FileReader(file);

 }

}

Figure-72 Output of program

208

2) Unchecked Exception

 The classes which inherit RuntimeException are known as unchecked

exceptions. For example ArithmeticException, NumberFormatException,

NullPointerException, ArrayIndexOutOfBoundsException etc. The unchecked

exceptions are not checked at compile-time, but they are checked at runtime. These

exceptions handle the unrecoverable programming errors.

For example,

import java.util.Scanner;

public class ExErr

{

public static void main (String args[])

{

String x = "abc ";

String s= null;

String c = x + s.length();

System. out. println (c);

}

}

Figure-73 Output of program

3.6 UNCAUGHT EXCEPTION

 Java provides a strong built in exception handling mechanism. It has a list of

exception classes derived from Exception class. The exception is raised when any

error occurred which further throws errors in form of appropriate Exception class

object. The main issue of this mechanism is that it terminates the program execution

from the line where error found. The program code after that error will not be

executed. For example, in following code the program will compiled successfully.

When we execute the program it will ask for value of a and b. Here a and b should

209

be integer value only. If we enter integer value for a and b, the program executes

successfully and output will print summation of them. However when we enter

character value for either a or b, at that point of time the run time error is raised and

the object of InputMismatchExcpetion is thrown which prints an error message and

terminate program execution.

import java.util.Scanner;

public class ExErr {

 public static void main(String args[]) throws Exception {

 int a;

 int b;

 Scanner sc = new Scanner (System.in);

 System. out. println (" a = ");

 a = sc.nextInt();

 System. out. println (" b = ");

 b = sc.nextInt();

 System. out. println (" a + b = " + (a + b));

 }

}

Figure-74 Output of program

210

3.7 HANDLING EXCEPTION

 The JVM automatically handle the unchecked Exception if we have not

handled the in java program. This will print a system generated error message along

with Exception class name. If we want to handle exception in our own way by

printing our own error message, we can do that by using exception handling

mechanism in java program.

The keywords try, catch and finally are used to handle exception in any java

program. The try block can be used with either catch block or finally block. The

syntax of using them in program is given below,

try {

// program logic

}

catch (Exception_Class obj) {

 // custom error message

// this block executes only when error occurred in program logic of the try block

}

finally {

// the code in finally will always be executed

}

We can not use try block without either catch or finally. It will give compilation error if

we use try block only.

Example,

import java.util.Scanner;

public class ExErr1 {

 public static void main(String args[]) throws Exception {

 int a = 0;

 int b = 0;

 try {

 Scanner sc = new Scanner (System.in);

 System. out. println (" a = ");

 a = sc.nextInt();

211

 System. out. println (" b = ");

 b = sc.nextInt();

 }

 }

}

Figure-75 Output of program

The following example shows use of try block with catch block, finally block and with

both catch and finally block.

Example 1 (try block with catch block)

import java.util.Scanner;

import java.util.InputMismatchException;

public class ExErr1 {

 public static void main(String args[]) throws Exception {

 int a = 0;

 int b = 0;

 try {

 Scanner sc = new Scanner (System.in);

 System. out. println (" a = ");

 a = sc.nextInt();

 System. out. println (" b = ");

 b = sc.nextInt();

 System. out. println (" a + b = " + (a + b));

 } catch (InputMismatchException e) {

 System. out. println ("Error occured as the value entered is a character ");

 }

 }

}

212

Figure-76 Output of program

 The code which may raise an exception must be put in try block. When an

error occurred during execution of program the try block throws an exception which

will be caught in catch block. In catch block we can write a code to handle exception.

In above example, we have printed a user message when exception is raised.

Example 2 (try block with finally block)

import java.util.Scanner;

import java.util.InputMismatchException;

public class ExErr1 {

 public static void main(String args[]) throws Exception {

 int a = 0;

 int b = 0;

 try {

 Scanner sc = new Scanner (System.in);

 System. out. println (" a = ");

 a = sc.nextInt();

 System. out. println (" b = ");

 b = sc.nextInt();

 } finally {

 System. out. println (" a + b = " + (a + b));

 }

 }

}

213

Figure-77 Output of program

 In above example we have put code which may raise exception in try block.

During program execution as we entered character for integer input an exception is

raised at that statement of program. As we have not written catch block the

exception will be handle by JVM, which prints an error message. After printing error

message program will not be terminated. It executes the finally block which prints

sum of a and b.

Example 3 (try block with both catch and finally block)

import java.util.Scanner;

import java.util.InputMismatchException;

public class ExErr {

 public static void main(String args[]) throws Exception {

 int a = 0;

 int b = 0;

 try {

 Scanner sc = new Scanner (System.in);

 System. out. println (" a = ");

 a = sc.nextInt();

 System. out. println (" b = ");

 b = sc.nextInt();

 }

catch (InputMismatchException e) {

214

 System. out. println ("Error occured as the value entered is a character ");

 } finally {

 System. out. println (" a + b = " + (a + b));

 }

 }

}

Figure-78 Output of program

 The code which may have possibility of error can be put in try block and when

error occurred in try block the appropriate exception object will be thrown. This

thrown object will be catch in catch block of the program (Here in above example as

e object). We can handle exception in catch block by writing our own code segment.

Here in above example we have printed our own error message. The finally block

contains the code which must be executed in any way. If exception raised due to

error, the program control will move to catch and then finally block. If exception is not

raised, after executing try block program control moves to the finally block.

3.8 TRY WITH MULTIPLE CATCH

 When in a try block there is only one possible error, we may handle that error

by writing catch block with appropriate exception. However it may possible that our

215

try block may raise more than one exception during execution of different code

statement. To handle such situation java allow us to write multiple catch block for

single try block. Each catch block will handle the appropriate exception.

For example,

import java.util.Scanner;

import java.util.InputMismatchException;

public class ExErr {

 public static void main(String args[]) throws Exception {

 int a[] = { 3, 4, 5, 6, 7, 8};

 int b = 0, i=0;

 try {

 Scanner sc = new Scanner (System.in);

 System. out. println (" index = ");

 i = sc.nextInt();

 System. out. println (" a[i] = " + a[i]);

 System. out. println (" b = ");

 b = sc.nextInt();

 System. out. println (" b = " + b);

 }

 catch (InputMismatchException e) {

 System. out. println ("Error occured as the value entered is a character ");

 }

 catch (ArrayIndexOutOfBoundsException e) {

 System. out. println ("Error occured as the value of i is >=6 ");

 }

 }

}

216

Figure-79 Output of program

 In above example, the line 8 in main method may raise

ArrayIndexOutOfBoundsException if the value of entered i is > = 6. The line 11 of

main method will raise InputMismatchException if the entered value for b is non

integer. To handle these two exceptions of try block we have written two catch

blocks, one for handling each exception.

3.9 NESTED TRY...CATCH...FINALLY BLOCK

 Like loops and if...else statement, try ... catch...finally block can also be

nested. We can write a try...catch...finally block inside the try...catch... finally block.

We can use this concept in our program when within try block we may have some

program statements which causes an error and the other program statements cause

the other error and we want to handle both errors independently. When we use

nested try...catch block the inner block will be executed first.

For example,

import java.util.Scanner;

import java.util.InputMismatchException;

217

public class ExErr {

 public static void main(String args[]) throws Exception {

 int a[] = { 3, 4, 5, 6, 7, 8};

 int b = 0, i=0;

 try {

 Scanner sc = new Scanner (System.in);

 System. out. println (" index = ");

 i = sc.nextInt();

 System. out. println (" a[i] = " + a[i]);

 try{

 System. out. println (" b = ");

 b = sc.nextInt();

 System. out. println (" b = " + b);

 }

 catch (InputMismatchException e) {

 System. out. println ("Error occured as the value entered is a character ");

 }

 }

 catch (ArrayIndexOutOfBoundsException e) {

 System. out. println ("Error occured as the value of i is >=6 ");

 }

 }

}

218

Figure-80 Output of program

3.10 LET US SUM UP

Error : Error is something unexpected in your program which stop execution of the

program.

Syntax Error : They are the design time error which is due to mistake done by

programmer. They are detected at compile time.

Logical Error : these errors occur due to mistake in program logic. These errors

occur when the output of the program is not as per the programmer expectation.

Runtime Error : They are not detected by compiler. They occur at runtime due to

unexpected input or failure. Java handles run time error using exception.

Exception : Java handles the run time error using exception handling mechanism.

Checked Exception : The checked exception are the exception classes which are

derived from Exception class. Checked exception is raised at compile time. These

exceptions must be handled in program.

Unchecked Exception : These exceptions are raised at run time. All the exception

classes derived from RuntimeException class are of unchecked type.

219

Uncaught Exception : The JVM will automatically handle the exception raised at

run time (unchecked exception) . For handling checked exception programmer has

to use try ... catch ... finally blocks or throws keyword.

Exception handling using try ... catch ... finally: The code which may have

possibility of error can be put in try block and when error occurred in try block the

appropriate exception object will be thrown. This thrown object will be catch in catch

block of the program. The finally block always runs by the program. We can not use

try block without catch or finally block.

Try with multiple catch : With a single try block we can write multiple catch block in

our java program. One catch block for each Exception we want to handle.

Nested try ... catch ... finally : It is also possible to write try ... catch ... finally block

within a try ... catch ... finally. It is called nested try ... catch ... finally.

3.11 CHECK YOUR PROGRESS

 True-False with reason

1. We can not handle errors in java program.

2. Syntax error will be caught at run time.

3. Runtime error will be caught by compiler.

4. Compiler can detect syntax error only.

5. Try can be used either with catch or finally block.

6. We can not write more than one catch block with try block.

7. Finally block will be run even though the exception is raised.

8. Nested try … catch is not supported in java.

9. Checked exception must be handled by programmer in java program.

10. Uncheck exception must be handled by programmer in java program.

 Match A and B.

 A B

 1)Exception a)unexpected event

 2)Error b) try … catch within try … catch

 3)Checked Exception c)must be handled by programmer

220

 4)Unchecked Exception d)handled by JVM

 5)Nested try … catch e)error which can be handle at run time

 Compare the following:

1. Error and Exception

2. Checked Exception and Unchecked Exception

3. Catch block and finally block

4. Syntax error and runtime error

 MCQ

1. Exception is a class/interface/abstract class/other?

a. Class

b. Interface

c. Abstract class

d. Other

2. Exception and Error are direct subclasses of?

a. BaseException

b. Throwable

c. Object

d. RuntimeException

3. Which of these are java.lang.Error in exception handling in java

a. VirtualMachineError

b. IOError

c. AssertionError

d. ThreadDeath

e. All

4. What type of Exceptions can be ignored at compile time?

a. Runtime

b. Checked

c. Both

d. None

5. What will be output of following program –

public class ExceptionTest {

 public static void main (String args[]) {

 System. out. println (― method return -> ― + m());

 }

 static String m() {

 try {

 int i = 10 / 0;

221

 } catch (ArithmeticException e)

 { return ―catch‖; }

 finally

 { return ―finally‖; }

 }

 }

a. runtime exception

b. method return -> finally

c. method return -> catch

d. compile timeError

6. Which of the following are the most common run-time errors in Java

programming?

i) Missing semicolons

ii) Dividing an integer by zero

iii) Converting invalid string to number

iv) Bad reference of objects

a) i and ii only

b) ii and iii only

c) iii and iv only

d) i and iv only

7. Which of the following are the most common compile time errors in Java

programming?

i) Missing semicolons

ii) Use of undeclared variables

iii) Attempting to use a negative size for an array

iv) Bad reference of objects

a) i, ii and iii only

b) ii, iii and iv only

c) i, ii and iv only

d) All i, ii, iii and iv

8. The unexpected situations that may occur during program execution are

i) Running out of memory

ii) Resource allocation errors

iii) Inability to find a file

iv) Problems in network

222

a) i, ii and iii only

b) ii, iii and iv only

c) i, ii and iv only

d) All i, ii, iii and iv

9. The class at the top of the exception classes hierarchy is called

……………………

a) throwable

b) catchable

c) hierarchical

d) ArrayIndexOutofBounds

10. ………………… exception is thrown when an exceptional arithmetic condition

has occurred.

a) Numerical

b) Arithmetic

c) Mathematical

d) All of the above

11 …………………….. exception is thrown when an attempt is made to access

an array element beyond the index of the array.

a) Throwable

b) Restricted

c) Security

d) ArrayIndexOutofBounds

12. You can implement exception-handling in your program by using which of the

following keywords.

i) Try ii) NestTry iii) Catch iv) Finally

a) i, ii and iii only

b) ii, iii and iv only

c) i, iii and iv only

d) All i, ii, iii and iv

13. When a ……………………. block is defined, this is guaranteed to execute,

 regardless of whether or not in exception is thrown.

a) throw

b) catch

c) finally

d) try

14. Every try statement should be followed by at least one catch statement;

 otherwise …………………. will occur.

a) no execution

b) null

c) zero

d) compilation error

223

15. If an exception occurs within the …………………….. block, the appropriate

 exception-handler that is associated with the try block handles the exception.

a) throw

b) catch

c) finally

d) try

16 Exception classes are available in the ……………………package.

a) java.lang

b) java.awt

c) java.io

d) java.applet

17 Consider the following code snippet:

……………….

……………….

try {

int x = 0;

int y = 50 / x;

System. out. println (―Division by zero‖);

}

catch(ArithmeticException e) {

System. out. println (―catch block‖);

}

………………

………………

What will be the output?

a) Error.

b) Division by zero

c) Catch block

d) Division by zero Catch block

18 When an exception in a try block is generated, the Java treats the multiple

………………. statements like cases in switch statement.

a) throw

b) catch

c) finally

d) try

19. The …………………. statement can be used to handle an exception that is

 not caught by any of the previous catch statement.

a) throw

b) catch

c) finally

d) try

224

20. What will be the output of the program?

public class Foo

{
 public static void main(String[] args)
 {
 try
 {
 return;
 }
 finally
 {
 System. out. println ("Finally");
 }
 }
}

a. Finally

b. Compilation fails.

c. The code runs with no output.

d. An exception is thrown at

runtime

 21 What will be the output of the program?

try

{
 int x = 0;
 int y = 5 / x;
}
catch (Exception e)
{
 System. out. println ("Exception");
}
catch (ArithmeticException ae)
{
 System. out. println (" Arithmetic Exception");
}
System. out. println ("finished");

a) finished

b) Exception

c) Compilation fails.

d) Arithmetic Exception

22. What will be the output of the program?

public class X

{
 public static void main(String [] args)
 {
 try

225

 {
 badMethod();
 System.out.print("A");
 }
 catch (Exception ex)
 {
 System.out.print("B");
 }
 finally
 {
 System.out.print("C");
 }
 System.out.print("D");
 }
 public static void badMethod() {}
}

a) AC

b) BC

c) ACD

d) ABCD

23 What will be the output of the program?

public class X

{

 public static void main(String [] args)

 {

 try

 {

 badMethod(); /* Line 7 */

 System.out.print("A");

 }

 catch (Exception ex) /* Line 10 */

 {

 System.out.print("B"); /* Line 12 */

 }

 finally /* Line 14 */

 {

 System.out.print("C"); /* Line 16 */

 }

 System.out.print("D"); /* Line 18 */

226

 }

 public static void badMethod()

 {

 throw new RuntimeException(); }

}

a) AB

b) BC

c) ABC

d) BCD

24 What will be the output of the program?

public class MyProgram

{
 public static void main(String args[])
 {
 try
 {
 System.out.print("Hello world ");
 }
 finally
 {
 System. out. println ("Finally executing ");
 }
 }
}

a) Nothing. The program will not compile because no exceptions are specified.

b) Nothing. The program will not compile because no catch clauses are specified.

c) Hello world.

d) Hello world Finally executing

25. Types of exceptions in Java programming are

a) Checked exception

b) unchecked exception

c) Both A & B

d) None

26. What is the output of the following program?

public class Test

{
 private void m1()
 {
 m2();
 System.out.printf("1");
 }

227

 private void m2()
 {
 m3();
 System.out.printf("2");
 }
 private void m3()
 {
 System.out.printf("3");
 try
 {
 int sum = 4/0;
 System.out.printf("4");
 }
 catch(ArithmeticException e)
 {
 System.out.printf("5");
 }
 System.out.printf("7");
 }
 public static void main(String[] args)
 {
 Test obj = new Test();
 obj.m1();
 }
}

a) 35721

b) 354721

c) 3521

d) 35

27. What is the output of the following program?

public class Test

{
 public static void main(String[] args)
 {
 try
 {
 System.out.printf("1");
 int data = 5 / 0;
 }
 catch(ArithmeticException e)
 {
 System.out.printf("2");
 System.exit(0);
 }
 finally
 {
 System.out.printf("3");
 }
 System.out.printf("4");

228

 }
}

a) 12

b) 1234

c) 124

d) 123

3.12 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

 True-False with reason

1. False. We can handle errors using try … catch block.

2. False. At compile time.

3. False. By interpreter

4. True

5. True.

6. False. We can write on try with multiple catch blocks.

7. True

8. False. Nested try … catch can be used in java.

9. True

10. False. It will be handled at rum time by JVM

 Match A and B.

 A B

 1)Exception a)unexpected event

 2)Error b) try … catch within try … catch

 3)Checked Exception c)must be handled by programmer

 4)Unchecked Exception d)handled by JVM

 5)Nested try … catch e)error which can be handle at run time

Answer :

1) – e, 2) – a, 3) – c, 4) – d, 5) – b

 Compare the following:

1. Error v/s Exception

Error Exception

Error is something unexpected in your Exception is means using which Java

229

program which stop execution of the

program.

handles the run time errors.

Error can be syntax error, logical

errors, run-time errors or latent errors

Exception can Checked Exception or

Unchecked Exception

Examples are StackOverflowError,

VirtualMachineError,

OutofMemoryError etc.

Examples, are IOException,

ClassNotFoundException etc.

2. Checked Exception v/s Unchecked Exception

Checked Exception Unchecked Exception

All the classes which extend the

Throwable class except

RuntimeException and Error are

known as checked exceptions

The classes which inherit

RuntimeException are known as

unchecked exceptions.

The checked exceptions are checked

at compile time.

The unchecked exceptions are

checked at runtime.

They are not derived from

RuntimeException class.

They are derived from

RuntimeException class.

Examples are IOException,

SQLException etc.OutofMemoryError

etc.

Examples, are IOException,

ClassNotFoundException etc.

3. Catch block v/s finally block

Catch block Finally block

This block is compulsory to use with

try block.

This block is optional.

We can write the code to handle the

exception in catch block

We can write the code which we want

to execute in any case; with or

without error in this block

We can write multiple catch block with

one try block

You can only have one finally block

per try/catch block

230

4. Syntax error v/s runtime error

Syntax error Runtime error

It is a grammatical error while writing

program.

It is the error in the logic of program.

It is indented at compile time It is identified at runtime

This error must be remove from the

program to compile it.

Java handles this error using

Exception.

 MCQ

1) a

2) b

3) e

4) c

5) c

6)b

7) c

8) d

9) a

10) b

11) d

12) a

13) c

14) d

15) d

16) a

17) c

18) b

19) c

20) c

21) b

22) c

23) b

24) d

25) d

26)d

27) a

3.13 FURTHER READING

1) ―Java 2: The Complete Reference‖ by Herbert Schildt, McGraw Hill

Publications.

2) ―Effective Java‖ by Joshua Bloch, Pearson Education

3) Exception Handling in Core Java | Core Java Tutorial | Studytonight

 https://www.studytonight.com/java/exception-handling.php

4) Exception Handling in Java | Java Exceptions - javatpoint

 https://www.javatpoint.com/exception-handling-in-java

5) Exception handling in java with examples - BeginnersBook.com

 https://beginnersbook.com/2013/04/java-exception-handling/

https://www.studytonight.com/java/exception-handling.php
https://www.javatpoint.com/exception-handling-in-java
https://beginnersbook.com/2013/04/java-exception-handling/

231

3.14 ASSIGNMENTS

1) Write a java program to find solution of quadratic equation. Take care of divide by

zero error and other arithmetic exceptions.

2) Write a program to get value of radius through keyboard and calculate area of

circle. Take care of InputMismatchException.

3) Write a program to create an array of 10 integers. Get value of those 10 integers

using console. Now ask for an index of array through keyboard then divide the

array into two from that index. Take care of array index out of bound exception.

Also handle InputMismatchException.

