
81

UNIT STRUCTURE

6.0 Learning Objectives
6.1 Introduction
6.2 Static Keyword
6.3 Using Abstract Classes
6.4 Interfaces
6.5 Packages
6.6 Access Protection
6.7 Let Us Sum Up
6.8 Suggested Answer for Check Your Progress
6.9 Glossary
6.10 Assignment
6.11 Activities
6.12 Case Study
6.13 Further Readings

6.0 Learning Objectives :

After learning this unit, you will be able to :
• Static Keyword
• Abstract Classes
• Interfaces
• Packages
• Access Protection

6.1 Introduction :

Figure 6.1 Feature of C language

The development of Java has been a compilation of the best points of
various programming languages such as C and C++. Java therefore utilizes
algorithms and methodologies that are already proven. The Java environment

LANGUAGE FEATURES
Unit

06

Fast and Efficient

Portable

Easy to extend

Modularity

Function rich
Libraries

Variety of data types
and powerful Operators

C Language

82

Object Oriented
Concepts &

Programming–1
(Core Java)

automatically tackles tasks which are prone to errors such as pointers and
memory management rather than the programmer taking the initiative.

Since Java is primarily a derivative of C++ that most programmers are
conversant with, it implies that Java has a familiar feel rendering it easy to
use. The Java language supports many high–performance features such as
multithreading, just–in–time compiling and native code usage.

6.2 Static Keyword :

When an object is created or, primitive type variable or method is called,
the memory for that object, variable or method is set aside.

The different objects, variables and methods occupy different areas of
memory when created/called. In some cases, we would like to have multiple
objects, variables or methods which occupy the same area of memory (in effect
just having the one instance of that variable or method). The above can be
achieved by using the static keyword; it is possible to have static methods
and variables.

In Java, global variables are not allowed. In order to do the same, the
instance variable in the class can be declared static. The effect of doing this
is that when we create multiple objects of that class, every object shares the
same instance variable that was declared to be static.

To make an instance variable static, we simply precede the declaration
with the static keyword :

public static int Instance_variable = 0

In effect, what we are really doing is saying that this instance variable,
no matter how many objects are created should always reside in the same
memory location regardless of the object. This then stimulates a 'global variable'
of sorts.

We usually make a variable declared to be final, static as well since
it makes sense to only have the one instance of a constant. The static instance
variables are also called as class variables.

Outside of the class in which they are defined, static methods and
variables can be used independently of any object. In order to do so, you only
need to specify the name of the class followed by the dot operator.

 Check Your Progress – 1 :
1. Explain how to make an instance variable static.

2. What are static instance variables also called as ?

...

...

...

...

...

83

Language Features6.3 Using Abstract Classes :

There are often situations where you want to determine a superclass,
which without providing a complete implementation of every method declares
the structure of an abstraction. That is, many a times you'll want to create
a superclass that only defines a generalized form that will be shared by all
of its subclasses, leaving it to each subclass to fill in the details.

The abstract keyword can be used with :

1. A class

2. A method

 Abstract Method :

In a method declaration, abstract indicates that the implementation will
be in subclass. Since these methods do not have an implementation specified
in the superclass they are sometimes cited as subclasser responsibility. Hence,
a subclass cannot use the version defined in the superclass, it must override
them. To declare an abstract method, use this general form :

abstract type Method_Name (parameter–list);

No method body is present as specified above.

 Abstract Class :

A class that is declared abstract is defined as an abstract class. The class
need not necessarily include abstract methods and can be subclassed. Abstract
classes cannot be instantiated.

In order to declare a class as abstract, you have to use the abstract
keyword before the class keyword at the beginning of the class declaration.
There can be no objects of the abstract class, that is, an abstract class cannot
be directly instantiated with the new operator.

Any derived class that does not implement all abstract methods of its
superclass must be declared abstract. Let us take an Example : to understand
this concept in more detail.

In the given program, the class Figure is declared as abstract because
we don't want objects of this class to be created. Instead, this class should
be subclassed. Notice that the method area () is also abstract because we cannot
define it in the Figure class. It is defined in the subclass –Rect

84

Object Oriented
Concepts &

Programming–1
(Core Java)

abstract class Figure

{

 protected double dim1, dim2;

 Figure(double dim1, double dim2)

 {

 this.dim1 =dim1;

 this.dim2 =dim2;

 }

 abstract double area(); //abstract method

}

class Rect extends Figure

{

 Rect(double l, double d)

 {

 super(l,d);

 }

 double area()

 {

 return (dim1 * dim2);

 }

}

public class AbstractDemo

{

 public static void main (String args [])

 {

 Rect r = new Rect(15.2, 25.5);

 System.out.println("The area=" + r.area ());

 }

}

85

Language Features

Figure 6.3 Output of Program

 Check Your Progress – 2 :
1. Where is the abstract keyword used ?

2. Write the general form of abstract method.

...

...

...

...

...

6.4 Interfaces :

Figure 6.4 Interface

"A collection of abstract methods is an interface. Thus, be inheriting the
abstract methods of an interface a class implements an interface."

"An interface is not a class. They are two different concepts but writing
an interface is similar to a class. A class describes the attributes and behaviors
of an object. An interface contains behaviors that a class implements."

"Every method of the interface is defined in the class unless the class
implementing the interface is abstract."

An interface is similar to a class in the following ways :

• The interface contains various methods.

• The name of the interface matches the name of the file and it is written
with a .java extension.

• The bytecode of an interface appears in a .class file.

• An interface appears in packages and the bytecode file it corresponds
to must appear in a directory structure matching its name.

However, an interface is different from a class in several ways, including :

• You cannot instantiate an interface.

• Constructors do not constitute an interface.

• All of the methods in an interface are abstract.

Interface Class
implements

extends

Class

86

Object Oriented
Concepts &

Programming–1
(Core Java)

• An interface can only contain fields that are declared both static and
final and it cannot contain instance fields.

• An interface is not extended by a class; it is implemented by a class.

• An interface can extend multiple interfaces.

 Declaring Interfaces :

The interface keyword is used to declare an interface.

Encapsulation is defined as a barrier protecting and preventing the code
and data from being randomly accessed by other code outside the class. The
access is tightly controlled by an interface.

The main benefit of encapsulation is the ability to modify our implemented
code without breaking the code of others who use our code. With this feature
Encapsulation gives maintainability, flexibility and extensibility to our code.

Example :

Let us look at an Example : that depicts encapsulation :

/* File name : NameOfInterface.java */

import java.lang.*

//Any number of import statements

public interface NameOfInterface

{

//Any number of final, static fields

//Any number of abstract method declarations\

}

Interfaces have the following properties :

• While declaring an interface you do not need to use the abstract keyword
since the interface is implicitly abstract.

• The abstract keyword is not needed as each method in an interface is
implicitly abstract.

• Methods in an interface are implicitly public.

 Implementing Interfaces :

The process of a class implementing an interface can be seen as the
class signing a contract, complying to carry out certain behaviors of the
interface. In case a class fails to carry out these behaviors, the class must declare
itself abstract.

In a class the implements keyword is used to implement the interface.
The implements keyword appears in the class declaration following the extends
portion of the declaration.

"When you define overriding methods in interfaces, the following rules
are to be followed :

• Checked exceptions should not be declared on implementation methods
other than the ones declared by the interface method or subclasses of
those declared by the interface method.

• When overriding methods, you must maintain the signature of the interface
method and also the same return type or subtype.

87

Language Features• Interface methods do not have to be implanted if in case an implementation
class itself is abstract.

• While implementing interfaces, there are several rules :

o A class can implement more than one interface at a time.

o A class can extend only one class but implement many interfaces.

o An interface itself can extend another interface. An interface cannot
extend another interface."

 Extending Interfaces :

Just as a class can extend another class, an interface can extend another
interface as well. The extends keyword is used to extend an interface and the
child interface inherits the methods of the parent interface.

"The following Sports interface is extended by Hockey and Football
interfaces.

//Filename : Sports.java

public interface Sports

{

public void setHomeTeam(String name)

public void setVisitingTeam(String name)

}

//Filename : Football.java

public interface Football extends Sports

{

public void homeTeamScored(int points)

public void visitingTeamScored(int points)

public void endOfQuarter(int quarter)

}

//Filename : Hockey.java

public interface Hockey extends Sports

{

public void homeGoalScored()

public void visitingGoalScored()

public void endOfPeriod(int period)

public void overtimePeriod(intot)

}

The Hockey interface has four methods but it inherits two from Sports;
thus, a class that implements Hockey needs to implement all six methods.
Similarly, a class that implements Football needs to define the three methods
from Football and the two methods from Sports."

88

Object Oriented
Concepts &

Programming–1
(Core Java)

 Check Your Progress – 3 :
1. Explain in what ways is an interface similar to a class.

2. Write the rules for implementing interfaces.

...

...

...

...

...

 Check Your Progress – 4 :
1. Write a note on abstract class number.

...

...

...

...

...

6.5 Packages :

Java uses packages to avoid naming conflicts, to ease the searching and
usage of interfaces, classes, annotations and enumerations and to control access.

Packages are a collection or group of related types of (classes, interfaces,
enumerations and annotations) providing access protection and name space
management.

Some of the existing packages in Java are :

• java.lang – bundles the fundamental classes

• java.io – classes for input , output functions are bundled in this package

Programmers can bundle up a group of classes/interfaces in order to
define their own packages. It is a good practice to group related classes
implemented by you so that a programmer can easily determine that the classes,
interfaces, enumerations, annotations are related.

There are to be no conflicts with names in various other packages since
a package creates a new namespace. With the help of packages, providing access
control and locating related classes can be done with ease.

 Creating a Package :

You have to select a name for the package and put a package statement
with that very name at the top of every source file that contains the classes,
interfaces, enumerations and annotation types that you want to include in the
package when you are creating it.

The first line in the source file must be the package statement. Each
source file can have only one package statement which shall apply to all types
in the file.

The class, interfaces, enumerations and annotation types are put into an
unnamed package if a package statement is not used.

89

Language FeaturesExample :

Let us look at an Example : that creates a package called animals. It
is a common practice to use lowercased names of packages to avoid any
conflicts with the names of classes, interfaces.

Put an interface in the package animals :

/* File name : Animal.java */

package animals

interface Animal {

public void eat()

public void travel()

}

Now put an implementation in the same package animals :

package animals;

/* File name : MammalInt.java */

public class MammalInt implements Animal{

public void eat(){

System.out.println("Mammal eats")

}

public void travel(){

System.out.println("Mammal travels")

}

public intnoOfLegs(){

return 0

}

public static void main(String args[]){

MammalInt m = new MammalInt();

m.eat();

m.travel();

}

}

 The import Keyword :

If a class wants to use another class in the same package, the package
name does not need to be used. Classes in the same package find each other
without any special syntax.

Example :

Here a class named Boss is added to the payroll package that already
contains Employee. The Boss can then refer to the Employee class without
using the payroll prefix, as demonstrated by the following Boss class.

90

Object Oriented
Concepts &

Programming–1
(Core Java)

package payroll;

public class Boss

{

public void payEmployee(Employee e)

{

e.mailCheck();

}

}

• The package can be imported using the import keyword and the wild
card (*) character. For Example :,

import payroll.*

• The class itself can be imported using the import keyword. For Example :

import payroll.Employee;

Note : A class file can contain any number of import statements. The
import statements must appear after the package statement and before the class
declaration.

 The Directory Structure of Packages :

When a class is placed in a package, the following results are concluded :

• As stated in the previous section, the name of the package becomes a
part of that of the classes' name.

• The name of the package must match the directory structure where the
corresponding bytecode resides.

 Check Your Progress – 5 :
1. Name the existing packages in Java.

2. What are the results when a class is placed in a package ?.

...

...

...

...

...

6.6 Access Protection :

Packages add another dimension to access control, they act as containers
for classes, other subordinate packages, data and code. The class is Java's
smallest unit of abstraction, due to the interplay between classes and packages,
Java addresses four categories of visibility for class members, which are
mentioned below :

• Subclasses in the same package.

• Non–subclasses in the same package.

• Subclasses in different packages.

• Classes that are neither in the same package nor subclasses.

91

Language FeaturesTable 6.1 : Class Member Access

The three access specifies, private, public and protected, provide a variety
of ways to produce the many levels of access required by these categories.

Anything declared public can be accessed from anywhere, whereas anything
declared private cannot be seen outside of its class. When a member does not
have an explicit access specification, it is visible to subclasses as well as to
other classes in the same package, which is the default access.

An element is declared protected if you want to allow an element to
be seen outside your current package but only to classes that subclass your
class directly.

Table 6.1 is applicable only to members of classes. A class has only
two possible access levels : default and public.

Let us consider an Example : to illustrate the above concepts :

packagepackageA;

public class Base

{

 public String publicStr = "publicString";

 protected String protectedStr = "protectedString";

 String defaultStr = "defaultString";

 private String privateStr = "privateString";

 public void print()

 {

 System.out.println("packageA.Base has access to");

 System.out.println(" " + publicStr);

 System.out.println(" " + protectedStr);

 System.out.println(" " + defaultStr);

 System.out.println(" " + privateStr);

Access rights for the different elements

class \ have access to private
elements

default
elements

(no modifier)

protected
elements

public
elements

yes yes yes yes

no yes yes yes

no yes yes yes

no no yes/no + yes

no no yes yes

own class (Base)

subclass - same package (SubA)

class - same package (AnotherA)

subclass - another package (SubB)

class - another package (AnotherB)

92

Object Oriented
Concepts &

Programming–1
(Core Java)

 Base b = new Base(); // -- other Base instance

 System.out.println(" b." + b.publicStr);

 System.out.println(" b." + b.protectedStr);

 System.out.println(" b." + b.defaultStr);

 System.out.println(" b." + b.privateStr);

 }

}

--

packagepackageB;

importpackageA.Base;

public class SubB extends Base

{

 public void print()

 {

 System.out.println("packageB.SubB has access to");

 System.out.println(" " + publicStr + " (inherited from Base)");

 //-- protectedStr is inherited element -> accessible System.out.println("
" + protectedStr + " (inherited from Base)");

 //-- not accessible

 //--System.out.println(defaultStr);

 //--System.out.println(privateStr);

 Base b = new Base(); // -- other Base instance System.out.println("
b." + b.publicStr)

 //-- protected element, which belongs to other object -> not accessible

 //--System.out.println(b.protectedStr);

 //-- not accessible

 //--System.out.println(b.defaultStr);

 //--System.out.println(b.privateStr);

 }

}

--

import packageA.*;

import packageB.*;

// -- testing class

93

Language Features

public class TestProtection

{

 public static void main(String[] args)

 {

 //-- all classes are public, so class TestProtection

 //-- has access to all of them

 new Base().print();

 newSubA().print();

 newAnotherA().print();

 newSubB().print();

 newAnotherB().print();

 }

}

 Types of Variables :

There are three kinds of variables in Java :

1. Local variables

2. Instance variables

3. Class/static variables

 Local variables :

• Local variables are declared in methods, constructors, or blocks.

• Local variables are created when the method, constructor or block is
entered and the variable will be destroyed once it exits the method,
constructor or block.

• Access modifiers cannot be used for local variables.

• Local variables are visible only within the declared method, constructor
or block.

• Local variables are implemented at stack level internally.

• There is no default value for local variables so local variables should
be declared and an initial value should be assigned before the first use.

 Instance variables :

• Instance variables are declared in a class but outside a method, constructor
or any block.

• When a space is allocated for an object in the heap, a slot for each
instance variable value is created.

• Instance variables are created when an object is created with the use
of the keyword 'new' and destroyed when the object is destroyed.

• Instance variables hold values that must be referenced by more than one
method, constructor or block, or essential parts of an object's state that
must be present throughout the class.

• Instance variables can be declared in class level before or after use.

• Access modifiers can be given for instance variables.

94

Object Oriented
Concepts &

Programming–1
(Core Java)

• The instance variables are visible for all methods, constructors and block
in the class. Normally it is recommended to make these variables private
(access level). However, visibility for subclasses can be given for these
variables with the use of access modifiers.

• Instance variables have default values. For numbers the default value is
0, for Booleans it is false and for object references it is null. Values
can be assigned during the declaration or within the constructor.

• Instance variables can be accessed directly by calling the variable name
inside the class. However, within static methods and different class (when
instance variables are given accessibility) they should be called using
the fully qualified name. Object Reference. Variable Name.

 Class/static variables :

• Class variables also known as static variables are declared with the static
keyword in a class but outside a method, constructor or a block.

• There would only be one copy of each class variable per class, regardless
of how many objects are created from it.

• Static variables are rarely used other than being declared as constants.
Constants are variables that are declared as public/private, final and static.
Constant variables never change from their initial value.

• Static variables are stored in static memory. It is rare to use static
variables other than declared final and used as either public or private
constants.

• Static variables are created when the program starts and destroyed when
the program stops.

• Visibility is similar to instance variables. However, most static variables
are declared public since they must be available for users of the class.

• Default values are same as instance variables. For numbers the default
value is 0, for Booleans it is false and for object references it is null.
Values can be assigned during the declaration or within the constructor.
Additionally values can be assigned in special static initialiser blocks.

• Static variables can be accessed by calling with the class name. Class
Name. Variable Name.

• When declaring class variables as public static final, then variables names
(constants) are all in upper case. If the static variables are not public
and final the naming syntax is the same as instance and local variables.

Note : If the variables are accessed from an outside class, the constant
should be accessed as Employee. Department

 Check Your Progress – 6 :
1. List the four categories of visibility for class members.

2. Write a note on instance variables ?

...

...

...

...

...

95

Language Features3. Java compiler convert source code in to code.

(A) Binary (B) Machine (C) English (D) Byte

4. JVM Stand for .

(A) Java Virtual Machine (B) Java Version Machine

(C) Java Virtual Mode (D) Java Version Mode

5. No method body is present as method.

(A) Final (B) Public (C) Private (D) Abstract

6. "A collection of abstract methods is called .

(A) Package (B) Interface (C) Class (D) Abstract class

7. The keyword is used to extend an interface

(A) Extends (B) inherit (C) final (D) depends

8. are a collection or group of related types of classes, interfaces,
enumerations and annotations.

(A) Packages (B) class (C) Interface (D) Namespace

9. Abstract keyword can be used with class only.

(A) True (B) False

10. The Abstract class need not necessarily include abstract methods.

(A) True (B) False

11. Interface is not a class.

(A) True (B) False

12. All of the methods in an interface are abstract.

(A) True (B) False

6.7 Let Us Sum Up :

When an object is created or, primitive type variable or method is called,
the memory for that object, variable or method is set aside.

The different objects, variables and methods occupy different areas of
memory when created/called. In some cases, we would like to have multiple
objects, variables or methods which occupy the same area of memory (in effect
just having the one instance of that variable or method). The above can be
achieved by using the static keyword; it is possible to have static methods
and variables.

In Java, global variables are not allowed. In order to do the same, the
instance variable in the class can be declared static. The effect of doing this
is that when we create multiple objects of that class, every object shares the
same instance variable that was declared to be static.

Sometimes there are situations in which you will want to define a
superclass, which declares the structure of a given abstraction without providing
a complete implementation of every method. That is, many a times you'll want
to create a superclass that only defines a generalized form that will be shared
by all of its subclasses, leaving it to each subclass to fill in the details. The
abstract keyword can be used with : a) A class, b) A method

An interface is a collection of abstract methods. A class implements an
interface, thereby inheriting the abstract methods of the interface. An interface

96

Object Oriented
Concepts &

Programming–1
(Core Java)

is not a class. Writing an interface is similar to writing a class but they are
two different concepts. A class describes the attributes and behaviors of an
object. An interface contains behaviors that a class implements. Unless the class
that implements the interface is abstract, all the methods of the interface need
to be defined in the class.

There is also learning about an interface is similar to a class in the several
ways : However, an interface is different from a class in several ways. Further
we learned about Declaring Interfaces, in this the interface keyword is used
to declare an interface. Here is a simple Example : to declare an interface.
Next thing which we understood is encapsulation can be described as a
protective barrier that prevents the code and data being randomly accessed by
other code defined outside the class. Access to the data and code is tightly
controlled by an interface.

There is also learning related to Packages are used in Java in–order to
prevent naming conflicts, to control access, to make searching/locating and
usage of classes, interfaces, enumerations and annotations easier. Packages add
another dimension to access control, they act as containers for classes and other
subordinate packages. Classes act as containers for data and code. The class
is Java's smallest unit of abstraction, due to the interplay between classes and
packages, Java addresses four categories of visibility for class members, which
are 1) Subclasses in the same package. 2) Non–subclasses in the same package.
3) Subclasses in different packages. 4) Classes that are neither in the same
package nor subclasses.

6.8 Suggested Answer for Check Your Progress :

 Check Your Progress 1 :

See Section 6.2

 Check Your Progress 2 :

See Section 6.3

 Check Your Progress 3 :

See Section 6.4

 Check Your Progress 4 :

See Section 6.5

 Check Your Progress 5 :

See Section 6.5

 Check Your Progress 6 :

1 : See Section 6.7 2 : See Section 6.7

3 : D 4 : A 5 : D 6 : B 7 : A

8 : A 9 : A 10 : A 11 : A 12 : A

6.9 Glossary :

1. Interface – An interface is a collection of abstract methods.

2. Instance variables – are declared variables in a class but outside a method,
constructor or any block.

3. Local variables – Local variables are declared in methods, constructors,
or blocks.

97

Language Features6.10 Assignment :

Write a note on Java technology.

6.11 Activities :

Write any two programs to show the use of Interfaces

6.12 Case Study :

Explain Java programming environment with the help of diagram

6.13 Further Reading :

1. Core Java 2, 2 volumes, Cay S. Horstmann, Gary Cornell, The Sun
Microsystems Press, 1999, Indian reprint 2000.

2. Java 2, the Complete Reference, Patrick Naughton and Herbert Schildt,
Tata McGraw Hill, 1999.

3. Programming with Java, Ed. 2, E. Balagurusamy, Tata McGraw Hill,
1998, reprint, 2000.

4. The Java Tutorial, Ed. 2, 2 volumes, Mary Campione and Kathy Walrath,
Addison Wesley Longmans, 1998.

5. The Java Language Specification, Ed. 2, James Gosling, Bill Joy, Guy
Steele & Gilad Bracha, (Ed. 1 1996, Ed. 2 2000), Sun Microsystems,
2000.

6. Using Java 2, Joseph L. Weber, Prentice Hall, Eastern Economy Edition,
2000

	6

