

281

Unit 2: Multithreaded
Programming-II

Unit Structure

2.1 Learning Objectives

2.2 Outcomes

2.3 Introduction

2.4 Synchronization

2.5 Deadlock

2.6 Inter-thread Communication

2.7 Suspending, Resuming, and Stopping Threads e

2.8 Let us sum up

2.9 Check your Progress: Possible Answers

2

282

2.1 LEARNING OBJECTIVE

 To explain concurrency issues in multithreading and its solutions

 To understand inter thread communication

2.2 OUTCOMES

After learning the contents of this chapter, the reader must be able to :

 Understand the importance of concurrency

 Use the concept of synchronization in programming, and

 Use inter-thread communication in programs.

2.3 INTRODUCTION

 Due to multiple threaded in a program, an asynchronous behavior introduces

in your program. Therefore, synchronization is necessary when a program needs.

 When two or more threads need access to a shared resource, they need

some way to ensure that the resource will be used by only one thread at a time. The

process by which this is achieved is called synchronization. For example, in a

banking system, you would not want one thread to credit some amount to user

account balance while another thread is trying to debit some amount from same

account balance; in such situations, you need some way to ensure that they don‘t

conflict with each other.

2.4 SYNCHRONIZATION

 Synchronization provides a simple monitor facility that can be used to provide

mutual-exclusion between Java threads.

 Java implements an elegant model of interprocess synchronization: ―The

monitor‖ (also called a semaphore). The monitor is a control mechanism. You can

assume that the monitor is a very small box that can allow only one thread to stay in

it. Once a thread enters a monitor, all other threads must wait until that thread exits

the monitor. In this way, a monitor can be used to protect a shared asset from being

manipulated by more than one thread at a time.

283

 Synchronized keyword in Java is used to provide mutually exclusive access

to a shared resource with multiple threads in Java. Synchronization in Java

guarantees that no two threads can execute a synchronized method which requires

the same lock simultaneously or concurrently.

The synchronization is mainly used to

1. To prevent thread interference.

2. To prevent consistency problem.

You can synchronize your code in either of two ways. Both involve the use of the

synchronized keyword, and both are examined here.

There are two ways to synchronized your code

1. using synchronized methods

2. synchronized statements

2.4.1 Using synchronized methods

 When you divide your program into separate threads, you need to define how

they will communicate with each other. Synchronized methods are used to

coordinate access to objects that are shared among multiple threads. These

methods are declared with the synchronized keyword. Only one synchronized

method at a time can be invoked for an object at a given point of time. When a

synchronized method is invoked for a given object, it acquires the monitor for that

object. In this case no other synchronized method may be invoked for that object

until the monitor is released. This keeps synchronized methods in multiple threads

without any conflict with each other.

 To understand the need for synchronization, let‘s begin with a simple example

that does not use it—but should. The following program has three simple classes.

The first one, MultiplicationTable, has a single method named printMulTable(). The

printMulTable () method takes an int parameter. This method print multiplication

value. It calls Thread.sleep(250), which pauses the current thread for 250

millisecond. The constructor of the next class, MThread, takes a reference to an

instance of the MultiplicationTable class and an int, which are stored in t and n

respectively. The constructor also creates a new thread that will call this object‘s

284

run() method. The thread is started immediately. The run() method of MThread calls

the printMulTable () method on the t instance of MultiplicationTable, passing in the n

int. Finally, the synchronized class starts by creating a single instance of

MultiplicationTable, and two instances of MThread, each with a unique int value. The

same instance of MultiplicationTable is passed to each MThread.

// Program-6

//example of java synchronized method

class MultiplicationTable{

void printMulTable(int n){ //nonsynchronized method

 for(int i=1;i<=5;i++){

 System.out.println(n*i);

 try{

 Thread.sleep(250);

 }catch(Exception e){System.out.println(e);}

 }

 }

}

class MThread extends Thread{

 MultiplicationTable t;

 int n;

 MThread(MultiplicationTable t, int n){

 this.t=t;

 this.n=n;

 }

 public void run(){

 t.printMulTable(n);

 }

}

public class ThreadSynchronizationDemo{

 public static void main(String args[]){

285

 MultiplicationTable obj = new MultiplicationTable();//only one object

 MThread t1=new MThread(obj, 5);

 MThread t2=new MThread(obj, 100);

 t1.start();

 t2.start();

 }

}

Output:

5

100

10

200

15

300

20

400

25

500

 As you can see, by calling sleep(), the printMulTable() method allows

execution to switch to another thread. This results in the mixed-up output of the two

threads. In this program, nothing exists to stop two threads from calling the same

method, on the same object, at the same time. This is known as a race condition,

because the two threads are racing each other to complete the method. This

example used sleep() to make the effects repeatable and obvious. In most

situations, a race condition is more subtle and less predictable, because you can‘t be

sure when the context switch will occur. This can cause a program to run right one

time and wrong the next.

 To fix the preceding program, you must serialize access to printMulTable ().

That is, you must restrict its access to only one thread at a time. To do this, you

286

simply need to precede printMulTable ()‘s definition with the keyword

synchronized, as shown here:

synchronized void printMulTable(int n){ //synchronized method

 for(int i=1;i<=5;i++){

 System.out.println(n*i);

 try{

 Thread.sleep(250);

 }catch(Exception e){System.out.println(e);}

 }

 }

This prevents other threads from entering printMulTable () while another thread is

using it. After synchronized has been added to printMulTable (), the output of the

program is as follows:

Output:

5

10

15

20

25

100

200

300

400

500

In such type of situation you should use the synchronized keyword to prevent the

state from race conditions.

2.4.2 The synchronized Statement/block

 An effective and easy way of synchronization is to create synchronized

methods within classes. But it will not work in all cases, for example, if you want to

synchronize access to objects of a class that was not designed for multithreaded

287

programming or the class does not use synchronized methods. Further, this class

was not created by you, but by a third party and you do not have access to the

source code. In such situation, the synchronized statement block is a solution.

Synchronized statement block are similar to synchronized methods. It is used to

acquire a lock on an object before performing an action.

The syntax of Synchronized statement block:

 Synchronized (obj) {

 // statement block

}

Here, obj is the object to be locked. If you desire to protect instance data, you should

lock against that object. If you desire to protect class data, you should lock the

appropriate Class object.

public void run() {

 synchronized (t) {

 t.printMulTable(n);

 }

}

2.5 DEADLOCK

 Deadlock in java is a part of multithreading/multitasking. Deadlock can occur

in a situation when two or more threads wait indefinitely for each other to relinquish

locks. In simple words, a thread is waiting for an object lock, that is acquired by

another thread and second thread is waiting for an object lock that is acquired by first

thread. Since, both threads are waiting for each other to release the lock, the

condition is called deadlock. Deadlock situations can also arise that involve more

than two threads.

288

Figure-96 Deadlock Scenario

Thread-1 has resource-B and is requesting Resource-A

Thread-2 has resource-A and is requesting Resource-B

 How to avoid deadlock

 The solution to any problem lies in identifying the cause of the problem. There

many different situations and solution of the deadlock state. In above situation, it is

the pattern of accessing the resources A and B, is main issue. So, to resolve it, we

will simply re-order the statements where the code is accessing shared resources.

 2.6 INTER-THREAD COMMUNICATION

 In previous section you learn about how deadlock can occur if a thread obtain

a lock and does not relinquish it. Now, in this section you will see that how threads

can cooperate with each other, a thread can temporarily release a lock so the

threads can get opportunity to execute a synchronized method or statement block.

The lock can be acquired then after.

 To avoid wastage of precious time of CPU, or to avoid polling, Java includes

an interthread communication mechanism via the wait(), notify(), and notifyAll()

methods. These methods are implemented as final methods in Object class, so all

classes have them. These three methods can be called only from within a

synchronized method or statement block.

 The Object class contains three final methods that allow threads to

communicate with each other. These methods are declared as:

public final void wait() throws Interrupted Exception

public final void wait(long milisec) throws Interrupted Exception

public final void wait(long milisec, int nanosec) throws Interrupted Exception

289

public final void notify()

public final void notifyAll()

 wait() method tells the calling thread to give up the monitor and go

to sleep until some other thread enters the same monitor and calls

notify() or notifyAll().

 notify() method wakes up a single thread that is waiting on this

object‘s monitor.

 notifyAll() method wakes up all threads that are waiting on this

object‘s monitor, the highest priority Thread will be run first.

 Let us see the following program written to control access of resource using

wait() and notify () methods.

// Program-7

class WaitNotify implements Runnable

{

WaitNotify ()

{

 Thread th = new Thread (this);

 th.start();

}

synchronized void notifyThat ()

{

 System.out.println ("Notify the threads waiting");

 this.notify();

}

synchronized public void run()

{

try {

 System.out.println("Thead is waiting....");

 this.wait ();

}

290

catch (InterruptedException e){}

System.out.println ("Waiting thread notified");

}

}

Class RunWaitNotify

{

public static void main (String args[])

{

 WaitNotify wait_not = new WaitNotify();

 Thread.yield ();

 wait_not.notifyThat();

}

}

Output:

Thead is waiting....

Notify the threads waiting

Waiting thread notified

2.7 SUSPENDING, RESUMING, AND STOPPING THREADS

 Prior to Java 2 the suspend(), resume(), and stop() methods defined by

Thread seem to be a perfectly reasonable and convenient approach to managing the

execution of threads, they must not be used for new Java programs.

 Java 2 onward these methods were deprecated. Here‘s why. The suspend()

method of the Thread class is deprecated in Java 2. This was done because

suspend() can sometimes cause serious system failures. Assume that a thread has

obtained locks on critical data structures. If that thread is suspended at that point,

those locks are not relinquished. Other threads that may be waiting for those

resources can be deadlocked.

 The resume() method is also deprecated. It does not cause problems, but

cannot be used without the suspend() method as its counterpart. The stop() method

291

of the Thread class, too, is deprecated in Java 2. This was done because the similar

to suspend() method.

 The task of suspend(), resume() and stop() methods is accomplished by

forming a flag variable that indicates the execution state of the thread. As long as

this flag is set to ―running,‖ the run() method must continue to let the thread execute.

If this variable is set to ―suspend,‖ the thread must pause. If it is set to ―stop,‖ the

thread must terminate. Of course, a variety of ways exist in which to write such code,

but the central theme will be the same for all programs.

Check Your Progress 1

1) Which is more preferred – Synchronized method or synchronized block?

2) What is deadlock?

3) How does thread communicate with each other?

2.8 LET US SUM UP

 This chapter explains various issue and solutions in concurrency. This chapter

explains concept of synchronization, creating synchronous methods and inter thread

communication. It is also explained how object locks are used to control access to

shared resources. It is also explain deadlock.

2.9 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Check Your Progress 1

1) Synchronized block is more preferred way because it doesn‘t lock the

Object, synchronized methods lock the Object and if there are multiple

synchronization blocks in the class, even though they are not related, it will

stop them from execution and put them in wait state to get the lock on

Object.

2) Deadlock is a situation when two or more threads wait indefinitely for each

other to relinquish locks.

292

3) When threads want to share resources, communication between Threads

is important to coordinate their activity. Object class contains wait(),

notify() and notifyAll() methods allows threads to communicate.

