

318

Unit 3: Graphics Class

Unit Structure

3.1 Learning Objectives

3.2 Outcomes

3.3 Introduction

3.4 Graphics Class

3.5 Layout Manager

3.6 Let us sum up

3.7 Check your Progress: Possible Answers

3.8 Further Reading

3.9 Assignments

3

319

3.1 LEARNING OBJECTIVE

The objective of this unit is to make the students,

 To learn, understand and define graphics class and its methods

 To learn, understand and define the Font class and its methods

 To learn, understand and define the Color class and its methods

 To learn, understand the arrangement of AWT controls on the container

 To learn, understand different Layout and its parameters

3.2 OUTCOMES

After learning the contents of this chapter, the students will be able to:

 Use Graphics class and its various methods

 Use Font class and its various methods in programs

 Use Color class and its various methods in programs

 Write a graphical application using graphics, font and color class

 Use Layout Manager to arrange AWT components on the containers

3.3 INTRODUCTION

 Java provides the platform to develop graphics based application using the

Graphics class. This unit dicusses various java functionalities for painting shapes like

rectangle, polygon etc. The unit covers the use of color and fonts. It also

demonstrates the filling of object once it is drawn on the container. It also discusses

various font family, its style to display the content on the container. It is essential to

learn to beautify the components placed on the container area using Font and Color

class. Withour the proper arrangement of control on the containers the GUI of the

application looks jagged. So, it becomes very important for the programmer to

arrangement the controls on the containers. Here, the Layout Manager comes. This

unit also discusses different layout techniques to arrange components on the

containers. It also covers various techniques to arrange the control manually using

setBounds method.

320

3.4 GRAPHICS CLASS

 In the AWT package, the Graphics class provides the foundation for all

graphics operations. At one end the graphics context provides the information about

drawing operations like the background and foreground colors, font and the location

and dimensions of the region of a component. At the other end, the Graphics class

provides methods for drawing simple shapes, text, and images at the destination.

To draw any object a program requires a valid graphics context in the form of

instance of the Graphics class. Graphics class is an abstract base class, it cannot be

instantiated. An instance is created by a component and handed over to the program

as an argument to a component's update() and paint() methods. The

update() and paint() method should be redefined to perform the desired graphics

operations. There are various methods used for drawing different component on the

containser. Thay are discussed below.

 repaint() Method

 The repaint() method requests for a component to be repainted. This method

has various forms as shown below:

1. public void repaint();

2. public void repaint(long tm) ; // Specify a period of time in milliseconds

Once a period of time is provided, the painting operation will occur before the time

elapses.

3. public void repaint(int x, int y, int w, int h);

 We can also provide that only a portion of a component be repainted. It is

useful when the paint operation is time-consuming, and only a portion of the display

needs to be repainted.

4. public void repaint(long tm, int x, int y, int w, int h);

 public void update(Graphics g)

 The update() method is called in turn to a repaint() request. This method

takes an instance of the Graphics class as an argument. The scope of graphics

instance is valid only within the context of the update() method and the methods it

321

calls. The default implementation of the Component class will erase the background

and calls the paint() method.

 public void paint(Graphics g)

 The paint() method is called from an update() method, and is responsible for

drawing the graphics. It takes an instance of the Graphics class as an argument.

 void drawLine(int xStart, int yStart, int xStop, int yStop)

It draws a straight line, a single pixel wide, between the specified start and end

points. The line will be drawn in the current foreground color. This methods works

when invoked on a valid Graphics instance and used only within the scope of a

component's update() and paint() methods.

 Retangle

Rectangle object can be drawn in different ways like,

1. void drawRect(int x, int y, int width, int height)

2. void fillRect(int x, int y, int width, int height)

3. void drawRoundRect(int x, int y, int width, int height, int arcwidth, int

archeight)

4. void fillRoundRect(int x, int y, int width, int height, int arcwidth, int archeight)

5. void draw3DRect(int x, int y, int width, int height, boolean raised)

6. void fill3DRect(int x, int y, int width, int height, boolean raised)

 All the method requires, the x and y coordinates as parameters to start the

rectangle, and the width and height of the rectangle. The width and height must be

positive values. Rectangles can be drawn in three different styles: plain, with

rounded corners, and with a three-dimensional effect (rarely seen).

 The RoundRect methods require an arc width and arc height to control the

rounding of the corners. The 3 dimensional methods require an additional parameter

that indicates whether or not the rectangle should be raised. These all method works

when invoked on a valid Graphics instance and used only within the scope of a

component's update() and paint() methods.

 Ovals and Arcs

322

Ovals and Arc object can be drawn in different ways like,

1. void drawOval(int x, int y, int width, int height)

2. void fillOval(int x, int y, int width, int height)

3. void drawArc(int x, int y, int width, int height, int startAngle, int arcAngle)

4. void fillArc(int x, int y, int width, int height, int startAngle, int arcAngle)

 Each of this method requires, the x and y coordinates of the center of the oval

or arc, and the width and height of the oval or arc. The width and height must be

positive values. The arc methods require a start angle and an arc angle, to specify

the beginning of the arc and the size of the arc in degrees.

 This methods works when invoked on a valid Graphics instance and used

only within the scope of a component's update() and paint() methods.

 Polygons

Polygon object can be drawn in different ways like,

1. void drawPolygon(int xPoints[], int yPoints[], int nPoints)

2. void drawPolygon(Polygon p)

3. void fillPolygon(int xPoints[], int yPoints[], int nPoints)

4. void fillPolygon(Polygon p)

 Polygons object drawn from a sequence of line segments. Each of this

method requires, the coordinates of the endpoints of the line segments that will make

the polygon. These endpoints can be specified by first, the two parallel arrays of

integers, one representing the x coordinates and the other representing the y

coordinates; second is, using an instance of the Polygon class. The Polygon class

provides the method addPoint(), which allows a polygon to be organized point by

point. These methods works when invoked on a valid Graphics instance and used

only within the scope of a component's update() and paint() methods.

3.4.1 COLOR CLASS

323

 The java.awt.Color class provides 13 standard colors as constants. They are:

RED, GREEN, BLUE, MAGENTA, CYAN, YELLOW, BLACK, WHITE, GRAY,

DARK_GRAY, LIGHT_GRAY, ORANGE and PINK. Colors are created from red,

green and blue components of RGB values. The range of RGB will be from 0 to 255

or floating point values from 0.0 to 1.0. We can use the toString() method to print the

RGB values of these color (e.g., System.out.println(Color.RED)):

 Methods

 To implement color in objects or text, two Color methods getColor() and

setColor() are used. Method getColor() returns a Color object and setColor() method

used to sets the current drawing color.

Now check below program to learn how these methods can be used.

Example:

import java.awt.Frame;

import java.awt.Panel;

import java.awt.Graphics;

import java.awt.Polygon;

import java.awt.Color;

public class PictureDraw extends Panel

{

 public void paint(Graphics g)

 {

 //Print a String message

 g.drawString("Welcome to BAOU", 20, 20);

 //draw a Line

 g.drawLine(0, 0, 100, 70);

 //draw a Oval

 g.drawOval(100, 100, 100, 100);

 //draw a rectangle

 g.drawRect(80, 80, 125, 125);

 //draw a Polygon

 int x[] = {35, 155, 35, 155, 35};

 int y[] = {35, 35, 155, 155, 35};

 g.drawPolygon(x,y,5); //points = 5;

324

 g.setColor(Color.orange);

 Polygon pg = new Polygon();

 pg.addPoint(220, 30);

 pg.addPoint(300, 35);

 pg.addPoint(320, 95);

 pg.addPoint(275, 70);

 pg.addPoint(210, 100);

 pg.addPoint(180, 50);

 g.drawPolygon(pg);

 g.fillPolygon(pg);

 }

 public static void main(String[] args)

 {

 Frame f= new Frame("Graphics Control");

 f.add(new PictureDraw());

 f.setSize(600, 1500);

 f.setVisible(true);

 f.setResizable(false);

 }

}

Output:

Figure-115: Output of program

 Check Your Progress 1

325

1) Write all state information that Graphics object encapsulates.

……………………………………………………………………………………

……………………………………………………………………………………

2) Write two important roles of Graphics class.

……………………………………………………………………………………

……………………………………………………………………………………

3) How does a Color class create color?

……………………………………………………………………………………

……………………………………………………………………………………

4) State the relationship between the Canvas and Graphics class.

 ……………………………………………………………………………………

……………………………………………………………………………………

3.4.2 FONT CLASS

 The java.awt.Font class represents a method of specifying and using fonts.

That font will be used to render the texts. The Font class constructor is used to

construct a font object using the font's name, style (PLAIN, BOLD, ITALIC, or BOLD

+ ITALIC) and font size. In java, fonts are named in a platform independent fashion

and then mapped to local fonts that are supported by the underlying operating

system. The getName() method is used to return the logical Java font name of a

particular font and the getFamily() method is used to return the operating system-

specific name of the font. In java the standard font names are Courier, Helvetica,

TimesRoman etc. There are 3 logical font names. Java will select a font name in the

system that matches the general feature of the logical font.

I. Serif: This is often used for blocks of text (example, Times).

II. Sansserif: This is often used for titles (example, Arial or Helvetica).

III. Monospaced: This is often used for computer text (example, Courier).

 The logical font family names are “Dialog”, “DialogInput”, “Monospaced”,

“Serif”, or “SansSerif” and Physical font names are actual font libraries such as

http://ecomputernotes.com/fundamental/disk-operating-system/what-is-operating-system
http://ecomputernotes.com/fundamental/disk-operating-system/what-is-operating-system

326

“Arial”, “Times New Roman” in the system. There is logical font names, standard on

all platforms and are mapped to actual fonts on a particular platform.

 Constructor:

public Font(String fontName, int fontStyle, int fontSize);

where, fontName represents Font Family name

fontStyle represents Font.PLAIN, Font.BOLD, Font.ITALIC or Font.BOLD or

Font.ITALIC

fontSize represents the point size of the font (in pt) (1 inch has 72 pt).

The setFont() method to set the current font for the Graphics context g for rendering

texts.

For example,

g.drawString(“Welcome to BAOU”, 15, 25); // in default font

Font fontTest = new Font(Font.SANS_SERIF, Font.ITALIC, 15);

g.setFont(fontTest);

g.drawString(“Gujarat Vidyapith”, 10, 50); // in fontTest

We can use GraphicsEnvironment’s getAvailableFontFamilyNames() method to list

all the font family names; and getAllFonts() method to construct all Font instances

(font size of 1 pt).

For example,

GraphicsEnvironment fontEnv =
GraphicsEnvironment.getLocalGraphicsEnvironment();

String[] fontList = fontEnv.getAvailableFontFamilyNames();

for (int i = 0; i < fontList.length; i++)

{

 System.out.println(fontList [i]);

}

// Construct all Font instance (with font size of 1)

327

Font[] fontList = fontEnv.getAllFonts();

for (int i = 0; i < fontList.length; i++)

{

 System.out.print(fontList [i].getFontName() + " : ");

 System.out.print(fontList [i].getFamily() + " : ");

 System.out.print(fontList [i].getName());

}

Example:

Now check below program to learn how Font class and its method can be used.

import java.awt.Font;

import java.awt.Frame;

import java.awt.Panel;

import java.awt.Graphics;

public class FontClass extends Panel

{

 public void paint(Graphics g)

 {

 Font f = new Font("Arial", Font.PLAIN, 18);

 Font fb = new Font("TimesRoman", Font.BOLD, 18);

 Font fi = new Font("Serif", Font.ITALIC, 18);

 Font fbi = new Font("Monospaced", Font.BOLD + Font.ITALIC, 18);

 g.setFont(f);

 g.setFont(fb);

 g.drawString("Welcome to BAOU, Ahmedabad", 10, 50);

 g.setFont(fi);

 g.drawString("This is Dept. of Computer Science", 10, 75);

 g.setFont(fbi);

 g.drawString("This is Gujarat Vidyapith, Ahmedabad", 10, 100);

 }

 public static void main(String s[])

 {

 Frame f= new Frame("Font Usage");

328

 f.add(new FontClass());

 f.setVisible(true);

 f.setSize(1550,200);

 }

}

Output:

Figure-116: Output of program

 Check Your Progress 2

1) How many ways can user display Font style?

……………………………………………………………………………………

……………………………………………………………………………………

2) What is the difference between paint() and repaint() methods?

……………………………………………………………………………………

……………………………………………………………………………………

3) Discuss different Font class methods.

……………………………………………………………………………………

……………………………………………………………………………………

4) Differentiate the Font and FontMetrics classes.

……………………………………………………………………………………

……………………………………………………………………………………

3.5 LAYOUT MANAGER

329

 It is possible to position and size the GUI component by hard coding but also

challenging and therefore not advised. So, it is advised to use layout manager as it is

easier to adjust and rework positions, sizes and the overall look-and-feel of the

container. Use of layout managers facilitates a top-level or base container to have its

own layout while other containers on top of it have their own layout which is

completely independent. Whenever we add any components to a container, the final

configuration of size and positioning is ultimately decided by the layout manager of

the underlying container. Therefore, anytime a container is resized, its layout

manager has to position each of the components within it. JPanel and content

panes are the containers base of the GUI application structure and belong to

FlowLayout and BorderLayout classes. It is recommended to set layout manager of

the container.

 LayoutManager is an interface. It is implemented by all the classes of layout

managers. The following class represents the layout managers from java.awt

package.

1. BorderLayout

2. FlowLayout

3. GridLayout

4. CardLayout

5. GridBagLayout

3.5.1 BORDERLAYOUT

 The BorderLayout helps to arrange the components in north, south, east, west

and center regions. This is the default layout for frame or window. The BorderLayout

has five constants for each region. They are public static final int NORTH, SOUTH,

EAST, WEST, CENTER.

Constructors:

330

1. BorderLayout(): This allows us to create a border layout without gaps between

the components.

2. JBorderLayout(int hgap, int vgap): This allows us to create a border layout

with the given horizontal and vertical gaps between the components.

Note: In this unit, we have used Frame as the main container in all programs.

Example: The following program depicts the use of BorderLayout.

import java.awt.*;

public class BorderLout extends Frame

{

 BorderLout(String title)

 {

 super(title);

 Button b1=new Button("BAOU");;

 Button b2=new Button("GVP");;

 Button b3=new Button("DCS");;

 Button b15=new Button("BCA");;

 Button b5=new Button("MCA");;

 add(b1,BorderLayout.NORTH);

 add(b2,BorderLayout.SOUTH);

 add(b3,BorderLayout.EAST);

 add(b15,BorderLayout.WEST);

 add(b5,BorderLayout.CENTER);

 }

 public static void main(String[] args)

 {

 Frame bly=new BorderLout("Border");

 bly.setSize(300,300);

 bly.setVisible(true);

 }

}

Output:

331

Figure-117: Output of program

3.5.2 FLOWLAYOUT

 The FlowLayout is used to arrange the components in a line. As we keeps

adding components, it arranges them one after another from left to right in a flow.

This layout is the default layout of applet or panel.

Constants of FlowLayout:

There are total five constants used in FlowLayout. They are public static final int

LEFT, RIGHT, CENTER, LEADING and TRAILING.

Constructors:

1. FlowLayout(): It allows us to create a flowlayout with centered alignment and

a default 5 unit horizontal and vertical gap.

2. FlowLayout(int align): It allows us to create creates a flowlayout with the

specified alignment and a default 5 unit horizontal and vertical gap.

3. FlowLayout(int align, int hgap, int vgap): It allows us to create a flowlayout

with the specified alignment and horizontal and vertical gap.

Example: The following program depicts the use of FlowLayout.

332

import java.awt.*;

public class FlowLout extends Frame

{

 FlowLout(String title)

 {

 super(title);

 Button b1=new Button("BAOU");

 Button b2=new Button("GVP");

 Button b3=new Button("DCA");

 Button b15=new Button("MCA");

 Button b5=new Button("BCA");

 add(b1);add(b2);add(b3);add(b15);add(b5);

 //setting flow layout of right alignment

 setLayout(new FlowLayout(FlowLayout.RIGHT));

}

public static void main(String[] args) {

 Frame fly=new FlowLout("Flow");

 fly.setSize(250,200);

 fly.setVisible(true);

}

}

Output:

Figure-118: Output of program

333

3.5.3 GRIDLAYOUT

 The GridLayout helps us to arrange the components in rectangular grid. Only

one component will be displayed in each rectangle.

Constructors:

1. GridLayout(): This constructor allows us to create a gridlayout with one

column per component in a row.

2. GridLayout(int rows, int columns): This constructor allows us to create a

gridlayout with the specified rows and columns but without the gaps between

the components.

3. GridLayout(int rows, int columns, int hgap, int vgap): This constructor allows

us to create a gridlayout with the specified rows, columns, horizontal gap and

vertical gap.

Example: The following program depicts the use of GridLayout.

import java.awt.*;

public class GridLout extends Frame

{

GridLout(String title){

 super(title);

 Button ba=new Button("A");

 Button bb=new Button("B");

 Button bc=new Button("C");

 Button bd=new Button("D");

 Button be=new Button("E");

 Button bf=new Button("F");

 Button bg=new Button("G");

 Button bh=new Button("H");

 Button bi=new Button("I");

 add(ba);add(bb);add(bc);add(bd);add(be);

 add(bf);add(bg);add(bh);add(bi);

 //setting gridlayout of 3 rows and 3 columns

334

 setLayout(new GridLayout(3,3));

}

public static void main(String[] args) {

 Frame fyl=new GridLout("Grid");

 fyl.setSize(300,300);

 fyl.setVisible(true);

}

}

Output:

Figure-119: Output of program

3.5.4 CARDLAYOUT

 The CardLayout class manages the components in such a manner that only

one component is visible at a time. It treats each component as a card that is why it

is known as CardLayout. There are various methods like next, first, previous, last

and show to flip from one card to another card.

Constructors:

1. CardLayout(): This constructor allows us to create a cardlayout with zero

horizontal and vertical gap.

335

2. CardLayout(int hgap, int vgap): This constructor allows us to create a

cardlayout with the specified horizontal and vertical gap.

Example: The following program depicts the use of GridLayout. We have used three

panels as a card to show different pane.

Import java.awt.*;

import java.awt.event.*;

class CardLout extends Frame implements ActionListener {

 CardLayout cardlt = new CardLayout(25,25);

 CardLout(String str) {

 super(str);

 setLayout(cardlt);

 Button Panel1 = new Button("BAOU");

 Button Panel2 = new Button ("DCS");

 Button Panel3 = new Button("GVP");

 add(Panel1,"BAOU");

 add(Panel2,"DCS");

 add(Panel3,"GVP");

 Panel1.addActionListener(this);

 Panel2.addActionListener (this);

 Panel3.addActionListener(this);

 }

 public void actionPerformed(ActionEvent e)

 {

 cardlt.next(this);

 }

 public static void main(String args[])

 {

 CardLout frame = new CardLout("CardLayout");

 frame.setSize(210,170);

 frame.setResizable(false);

 frame.setVisible(true);

 }

}

336

Output:

 Figure-120: Output of

program

Figure-121: Output of

program

Figure-122: Output of

program

3.5.5 GRIDBAGLAYOUT

 The Java GridBagLayout class helps to align components vertically,

horizontally or along their baseline. It is also most flexible as well as complex layout

managers. It places components in a grid of rows and columns, allowing particular

components to span multiple rows or columns. Not all rows and columns necessarily

have the same height. It places components in cells in a grid and then uses the

components' preferred sizes to determine how big the cells should be to contain

component.

 To use a GridBagLayout effectively, we need to customize one or more

component’s GridBagConstraints. By setting one of its instance variables we can

customize a GridBagConstraints object. The instances are:

 gridx, gridy

This variables specifies the cell at the top most left of the component's display

area, where address gridx=0 refers the leftmost column and address gridy=0

refers the top row. GridBagConstraints.RELATIVE is the default value. It

specifies that the component placed just to the right of (gridx) or below (gridy)

the component.

 gridwidth, gridheight

This variable specifies the number of cells in a row (for gridwidth) or column

(for gridheight) in the component's display area. The default value is 1.

http://www.lysator.liu.se/java/apidocs/java.awt.GridBagConstraints.html#gridx
http://www.lysator.liu.se/java/apidocs/java.awt.GridBagConstraints.html#gridy
http://www.lysator.liu.se/java/apidocs/java.awt.GridBagConstraints.html#gridwidth
http://www.lysator.liu.se/java/apidocs/java.awt.GridBagConstraints.html#gridheight

337

 fill

This variable is used when the component's display area is larger than the

component's requested size to decide whether to resize the component. We

can pass NONE (default), HORIZONTAL (will not change its height),

VERTICAL (will not change its width) and BOTH (component fill its display

area entirely) with GridBagConstrain as valid values of fill.

 ipadx, ipady

This variable specifies the internal padding. The width of the component will

be its minimum width plus ipadx*2 pixels (as the padding applies to both sides

of the component). Similarly, the height of the component will be its minimum

height plus ipady*2 pixels.

 insets

This variable specifies the external padding of the component. It will be the

minimum amount of space between the component and the edges of its

display area.

 anchor

This variable is helps us when the component is smaller than its display area

to decide where to place the component. We can pass CENTER (the default),

NORTH, NORTHEAST, EAST, SOUTHEAST, SOUTH, SOUTHWEST, WEST

and NORTHWEST as valid values.

 weightx, weighty

This variable is used to determine how to distribute space when we want to

specify resizing behaviour or change of dimension.

Example: Below example uses GridBagConstraints instance for all the components

the GridBagLayout manages. In real-life, it is recommended that you do not reuse

GridBagConstraints. In the example, just before each component is added to the

container, the code sets the appropriate instance variables in the

GridBagConstraints object. Then after it adds the component to its container,

passing the GridBagConstraints object as the second argument to the add method.

http://www.lysator.liu.se/java/apidocs/java.awt.GridBagConstraints.html#fill
http://www.lysator.liu.se/java/apidocs/java.awt.GridBagConstraints.html#ipadx
http://www.lysator.liu.se/java/apidocs/java.awt.GridBagConstraints.html#ipady
http://www.lysator.liu.se/java/apidocs/java.awt.GridBagConstraints.html#insets
http://www.lysator.liu.se/java/apidocs/java.awt.GridBagConstraints.html#anchor
http://www.lysator.liu.se/java/apidocs/java.awt.GridBagConstraints.html#weightx
http://www.lysator.liu.se/java/apidocs/java.awt.GridBagConstraints.html#weighty

338

import java.awt.*;

import java.awt.GridBagConstraints;

import java.awt.GridBagLayout;

public class gridBagLout extends Frame

{

 Button first, second,third,forth,fifth,sixth;

 public static void main(String[] args)

 {

 Frame gbl = new gridBagLout(“GridBag Layout”);

 gbl.setSize(300, 300);

 gbl.setVisible(true);

 }

 public gridBagLout(String str)

 {

 super(str);

 first=new Button("BAOU");

 second=new Button("DCS");

 third=new Button("MCA");

 forth=new Button("GVP");

 fifth=new Button("Ahmedabad");

 sixth=new Button("Gujarat");

 GridBagConstraints gbc = new GridBagConstraints();

 GridBagLayout layout = new GridBagLayout();

 setLayout(layout);

 gbc.fill = GridBagConstraints.HORIZONTAL;

 gbc.gridx = 0;

 gbc.gridy = 0;

 add(first, gbc);

 gbc.gridx = 1;

 gbc.gridy = 0;

 add(second, gbc);

 gbc.fill = GridBagConstraints.HORIZONTAL;

339

 gbc.ipady = 30;

 gbc.gridx = 0;

 gbc.gridy = 1;

 add(third, gbc);

 gbc.gridx = 1;

 gbc.gridy = 1;

 add(forth, gbc);

 gbc.gridx = 0;

 gbc.gridy = 2;

 gbc.fill = GridBagConstraints.HORIZONTAL;

 gbc.gridwidth = 2; //Merge two columns

 add(fifth, gbc);

 gbc.gridx = 0;

 gbc.gridy = 3;

 gbc.gridwidth = 2; //Merge two columns

 add(sixth, gbc);

 }

}

Output:

Figure-123: Output of program

 setBounds() method

340

 setBounds() method of awt.component class is used to set the size and

position of component. When we need to change the size and position of component

then we can use this method

 Syntax:

 public void setBounds(int x, int y, int width, int height)

 This parameter puts the upper left corner at location (x, y), where x is the

number of pixels from the left of the screen and y is the number from the top of the

screen.

Example:

import java.awt.*;

public class Setbound extends Frame

{

 Label name;

 TextField user;

 Button login;

 Setbound(String str)

 {

 super(str);

 setLayout(null);

 name=new Label("User_Name:");

 user=new TextField(10);

 login=new Button("Login");

 name.setBounds(50, 50, 75, 30);

 add(name);

 user.setBounds(130, 50, 180,30);

 add(user);

 login.setBounds(100, 90, 60, 30);

 add(login);

 }

 public static void main(String[] args)

 {

 Frame sb=new Setbound("SetBound");

341

 sb.setSize(350,150);

 sb.setVisible(true);

 }

}

Output:

Figure-124: Output of program

 Check Your Progress 3

1) What is the function of a LayoutManager in Java?

……………………………………………………………………………………

……………………………………………………………………………………

2) Why do you want to use a null layout manager?

……………………………………………………………………………………

……………………………………………………………………………………

3) Which method will cause a Frame to be displayed?

……………………………………………………………………………………

……………………………………………………………………………………

4) Write the advantages of layout manager over traditional windowing systems.

……………………………………………………………………………………

……………………………………………………………………………………

5) How the elements of a CardLayout are organized?

342

……………………………………………………………………………………

……………………………………………………………………………………

6) What is the difference between GridLayout and GridBagLayout?

……………………………………………………………………………………

……………………………………………………………………………………

3.6 LET US SUM UP

 In this unit we have learned the basics of how to paint, including how to use

the graphics primitives to draw basic shapes, how to use fonts and font metrics to

draw text, and how to use Color objects to change the color of what we are drawing

on the container. Graphics, Color and Font classes are the foundation in painting

that enables user to do animation inside a container and to work with images. Layout

Manager plays a crucial role for arranging components as per the user requirement

for designing attractive and user friendly GUI.

3.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

 Check Your Progress 1

1. State information of Graphics class includes he Component object on which

to draw, translation origin for rendering and clipping coordinates, current clip,

current color, current font, current logical pixel operation function, current

XOR alternation color.

2. First task is of the graphics context. The graphics context is information that

will affect drawing operations. This includes the background and foreground

colors, the font and the location and dimensions of the clipping rectangle. It

even includes information about the screen or image. Second role is that,

Graphics class provides methods for drawing simple geometric shapes, text

and images to the graphics destination. All output to the graphics destination

occurs via an invocation of various methods methods.

3. The Color class creates color by using the RGBA values. RGBA stands for

RED, GREEN, BLUE, ALPHA. The value for individual components RGBA

343

ranges from 0 to 255 or 0.0 to 0.1. The value of alpha determines the opacity

of the color, where 0 or 0.0 represents fully transparent and 255 or 1.0

represents opaque.

4. A Canvas object enables user to access to a Graphics object via its paint()

method.

 Check Your Progress 2

1. There are four styles for displaying fonts in Java. They are plain, bold, italic

and bold italic. Three class constants are used to represent font styles:

a. public static final int BOLD: This constant represents a boldface font.

b. public static final int ITALIC: This constant represents an italic font.

c. public static final int PLAIN: This constant represents a plain or normal

font.

2. Paint is called for the first time when the container is loaded. Every Java

Component implements paint(Graphics), which is responsible for painting that

component in the Graphics context passed as the parameter. When we

extend a Component and want to display it differently than its superclass, we

have to override public void paint(Graphics) .

 Whereas repaint method is called everytime the container is refreshed.

The repaint() method is sent to a Component when it needs to be repainted.

For example, a window is moved or resized or unhidden. It also happens

when a webpage contains an image and the pixels of the image are arriving

slowly. The action of repaint() is to spawn a new Thread, which

schedules update(Graphics) in 100 milliseconds. If another repaint() happens

before the 100 milliseconds time, the previous update() is cancelled and a

new one is scheduled.

3. Various method of Font class is described in following table.

344

Method

Name

Object Description

getFont() Graphics It will return the current font object as

previously set by setFont()

getName() Font It will return the name of the font as a

string

getSize() Font It will return the current font size (an

integer)

getStyle() Font It will return the current style of the font

(styles are integer constants: 0 is

plain, 1 is bold, 2 is italic, 3 is bold

italic)

isPlain() Font It will return true or false if the font's

style is plain

isBold() Font It will return true or false if the font's

style is bold

isItalic() Font It will return true or false if the font's

style is italic

Table-11: Methods of Font Class

4. The FontMetrics class is used to define implementation-specific properties

such as ascent and descent, of a Font object.

 Check Your Progress 3

1. A LayoutManager implements some policy for arranging components added to

a container. It sets the sizes and positions of the components. Different layout

managers have different rules for arranging components. The standard layout

manager classes are BorderLayout, GridLayout etc.

2. If the layout manager for a container is set to null, then the programmer has

to set the sizes and positions of all the components in the container. This

345

gives the programmer more flexibility over the layout. For simple layouts that

does not change size in a container, the setBounds() method of each

component will be called when it is added to the container. When the

container can change size, then the sizes and positions should be

recomputed whenever a change in size occurs. This task is performed by a

layout manager automatically, and due to this it is good to use a layout

manager for a container that can change size.

3. show() and setVisible() method

4. Java uses layout managers to layout components in a consistent manner

across all windowing platforms. Java's layout managers are not bind to

absolute sizing and positioning, they can accomodate platform-specific

differences among windowing systems.

5. The elements of a CardLayout are stacked, one upon other like a deck of

cards.

6. In Grid layout the size of each grid remains constant while in GridbagLayout

grid size can be varied.

3.8 FURTHER READING

11) Core Java Programming-A Practical Approach by Tushar B. Kute

12) Java: The Complete Reference by Schildt Herbert. Ninth Edition

13) Head First Java: A Brain-Friendly Guide, Kindle Edition by Kathy Sierra, Bert

Bates. 2nd Edition

14) Java: A Beginner’s Guide by Schildt Herbert Sixth Edition

15) Core Java Volume I — Fundamentals by Cay S. HorstMann, Gary Cornell, 9th

Edition

16) https://www.codemiles.com/java-examples/fonts-in-java-t2831.html

17) https://courses.cs.washington.edu/courses/cse3151/98au/java/jdk1.2beta15/d

ocs/api/java/awt/Font.html

18) https://www.leepoint.net/GUI-appearance/fonts/10font.html

3.9 ASSIGNMENTS

346

9) Define Graphics. Explain the importance of Graphics class in java.

10) Differentiate paint(), repaint() and update() method.

11) Explain Font class with proper example to demonstrate the use of font family.

12) How do we can set and get color in java application? Explain through

example.

13) What is Layout Manager? Explain different types of layout managers.

	4) Edition
	3.5.1 BORDERLAYOUT
	Constructors:
	3.5.2 FLOWLAYOUT
	Constants of FlowLayout:
	There are total five constants used in FlowLayout. They are public static final int LEFT, RIGHT, CENTER, LEADING and TRAILING.

	Constructors: (1)
	3.5.3 GRIDLAYOUT
	Constructors: (2)

	3.5.4 CARDLAYOUT
	Constructors:

