

29

Unit 2: Class and Object

Unit Structure

2.1 Learning Objectives

2.2 Arrays

2.3 class, object & method

2.4 Defining class

2.5 Adding variables

2.6 Adding methods

2.7 Creating objects

2.8 Constructor

2.9 this keyword

2.10 Garbage collection

2.11 finalize() method

2.12 Accessing class members

2.13 Methods overloading

2.14 Static members

2.15 Nesting of methods

2.16 Vectors

2.17 Wrapper classes

2.18 Let us sum up

2.19 Check your Progress

2.20 Check your Progress: Possible Answers

2.21 Further Reading

2.22 Assignments

2

30

2.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

 Understand the basics of array and its usage

 Understand and use the class and object

 Function of Garbage collector

 Use method overloading, nested function and static members of class

 Explain the usage of wrapper classes.

2.2 ARRAYS

2.2.1 ONE DIMENSIONAL ARRAY

 An array is a container in which we can store multiple values of a single type.

For example, we can create an array that can that stores 10 values of int type.

The syntax for array declaration is:

datatype[] arrayname;

here datatype can be any primitive data type and arrayname can be an identifier.

For example

 double[] s;

it means s is an array which stores double type values.

 We cannot use array after declaration. We have to allocate memory to the

array.

The syntax for memory allocation of array is:

double[] s;

s=new double[10];

it means s can hold 10 values which are of double type.

We can also declare and allocate memory of an array simulataneously.

 double[] s=new double[10];

31

 The first element of array can be s[0]. The other elements are s[1], s[2],

….s[9].

We can also initialize the array while declaration. For example,

int[] age = {12, 4, 5, 2, 5};

 For accessing an array we have to use integer index starting from 0 to n-1 (n

is length of array). In java, array length can be accessed using arrayname.length, as

the length is property of array in java.

For example

int[] age = {12, 4, 5, 2, 5};

For(int i=0; i<age.length; i++)

{

System.out.println(age[i]);

}

2.2.2 MULTIDIMENSIONAL ARRAY

 Multidimensional array is an array of an array. We can create multidimentional

array in java. For example.

int[][]x = new int[2][3];

 This array x can store 2 rows of integer values and each row has three

integers in it. This is a two dimensional array and it can store 2*3=6 integers in it.

We can also create three dimensional in java.

int [][][] x= new int [2][3][4];

it represents 3 dimension and can store 2*3*4 integers in it.

 Unlike C/C++, multidimensional arrays in java can have different number of

integer in each row.

For example

int[][] a = {

 {1, 2, 3},

 {4, 5, 6, 9},

 {7}, };

32

 In this array a, first row has 3 values, second row has four values and third

row has only one value stored in it.

 For accessing elements of multidimensional array multiple loops can be used.

For example:

class MultidimensionalArray {

 public static void main(String[] args) {

 int[][] a = {

 {1, -2, 3},

 {-4, -5, 6, 9},

 {7},

 };

 for (int[] innerArray: a) {

 for(int data: innerArray) {

 System.out.println(data);

 }

 }

 }

}

Array Example 1

A program to sort 5 integers in ascending order.

public class Ex_ary1

{

 public static void main(String args[])

 {

 int[] a={23,45,67,8,3};

 System.out.print("Before Sorting :");

 for(int i=0;i<a.length;i++)

 System.out.print(" "+a[i]);

 for(int i=0;i<a.length;i++)

 for(int j=i+1; j<a.length; j++)

33

 {

 if(a[i]>a[j])

 {

 int t=a[i];

 a[i]=a[j];

 a[j]=t;

 }

 }

 System.out.print("\nAfter Sorting :");

 for(int i=0;i<a.length;i++)

 System.out.print(" "+a[i]);

}

}

Figure-10 Output of Program

Array Example 2

A program to add two 3x3 matrix

public class Ex_ary2

{

 public static void main(String args[])

 {

 int[][] a={{1,1,1},{2,2,2},{3,3,3}};

 int[][] b={{4,4,4},{5,5,5},{6,6,6}};

 int[][] c=new int[3][3];

 for(int i=0;i<3;i++)

 for(int j=0;j<3;j++)

 c[i][j]=a[i][j]+b[i][j];

34

 System.out.print("Result matrix:\n");

 for(int i=0;i<3;i++)

 {

 for(int j=0;j<3;j++)

 System.out.print(c[i][j]+" ");

 System.out.print("\n");

 }

}

}

Figure-11 Output of Program

2.3 CLASS, OBJECT & METHOD

 An object is an entity which has several attributes and behavior. A number of

objects sharing same attributes and behavior form a Class. For example: parrot,

peacock, hen, dove are objects of class birds. They have attributes like colour,

eating habit, shape of beak etc and behavior like fly, build nest, lay eggs etc. in java

we can create a class using class keyword and declare various variables in it for its

attributes and create a function for its behavior. In java for creating a class, the class

keyword is used. The attributes of the class can be defined as member variable of

the class and behaviour of class can be methods of class in java.

2.4 DEFINING CLASS

 In java, class can be defined using class keyword follow by class name as

shown in example. The definition of class is written within braces. The class name

35

should start with capital letter. If class name has multiple words first letter of each

word should be capital. For example: Student, Bird, StringBuffer etc.

class Student
{

}

2.5 ADDING VARIABLES

 We can add variables in class by declaring them within class. for each

attribute of class we can create variable in it. For example class Student can have

attributes like rollNumber, name, course etc. The variable name in class should be in

lower case. If variable name has more than one word each word should start with

capital letter except first word. For example rollNumber. The student class can be

created as follows

class Student

{

 int rollNumber;

 String name;

 String course;

}

2.6 ADDING METHODS

 We can define methods in class. The syntax is return type then name of

method followed by arguments in bracket (). The function definition is written within

braces. For example in Student class we can create two functions getData for

assigning values to its variable and printData to print is variables.

class Student

{

 int rollNumber;

 String name;

 String course;

void getData(int r, Srting n, String c)

36

{

 rollNumber = r;

name = n;

course = c;

}

Void printData()

{

 System.out.println(rollNumber + ‖ ― + name + ‖ ― + course);

}

}

2.7 CREATING OBJECTS

 After defining class, we can use it by creating its object. This is also called

instantiation of class. the new keyword is used for creating object of class.

For example,

ClassName x = new ClassName ();

In this example ClassName is the name of class created in your program.

Example

class Student

{

int rollNember;

String name;

String course;

void getData(int r, String n, String c)

{

 rollNumber = r;

 name = n;

 course = c;

}

void printData()

{

37

 System.out.println (rollNumber);

 System.out.println (name);

 System.out.println (course);

}

}

class Exa_Cls

{

Public static void main(String args[])

{

 Student s1 = new Student(); //object s1 is created

 S1.getData(1, ‖manan‖ , ‖civil‖);

 s1.printData();

}

}

Figure-12 Output of Program

2.8 CONSTRUCTOR

 In java, we can define Constrictors in a class. Constructor is a function which

has same name as class name. This function will be called when we create object

using new keyword. The constructors are mainly used to initialize the

attributes/variables of the class. Constructor can be default constructor or

parameterized constructor. In default constructor, nothing is passed as an argument.

However in parameterized constructor the parameter values must be passed as

arguments of constructor function.

For example:

38

class Student{

int rollNember;

String name;

String course;

Student() //default constructor

{

 rollNumber = 0;

 name = ‖‖;

 course = ‖‖;

}

Student(int r, String n, String c) //parameterized constructor

{

 rollNumber = r;

 name = n;

 course = c;

}

void printData()

{

 System.out.println(rollNumber);

 System.out.println(name);

 System.out.println(course);

}

}

class Exa_Cls

{

 Public static void main(String args[])

 {

 Student s1 = new Student(1,‖manan‖,‖civil‖);

 s1.printData();

 }

}

39

Figure-13 Output of Program

2.9 THIS KEYWORD

 this is reference variable of java which points to the current object. It can also

be used to point instance of the current class as shown in following example.

class abc

{

 int a,b,c;

 abc(){ a = 0; b = 0; c = 0;}

 abc(int a,int b, int c)

 {

 this.a = a;

 this.b = b;

 this.c = c;

 }

}

class MyExa

{

 public static void main(String args[])

 {

 abc x = new abc(1,2,3);

 }

}

 In above example, in class abc, this.a, this.b and this.c are referring the

variable of class abc and a,b and c are the parameters of constructor.

40

2.10 GARBAGE COLLECTION

 In C, when we allocate memory at runtime using malloc() function, at the end

of program we have to free them using free() function. Similarly in C++, when we

create memory for any object/variable using new, we should free them using delete.

 In java when we are creating memory for reference variable/object,

programmer don‘t care about destroying them. There is a special component in JVM

called garbage collector which will take care of deletion of all memory occupied by

java programs. It frees the heap memory occupied by reference variables which are

not in use. Java has an automatic garbage collection.

2.11 FINALIZE() METHOD

 The finalize() is a method of java.lan.Object class which is called by garbage

collector for the which is identified to be destroyed. It is because there are no

reference to that object in program. In a class we can override (redefine) the finalize

method to perform the cleanup of system resources.

2.12 ACCESSING CLASS MEMBERS

 To access the member variables and methods of the class, we should create

the object of the class using new keyword. And using the object name and

variable/method name separated by . we can access the member variable the

example is shown in section 2.7 and 2.6.

2.13 METHODS OVERLOADING

 Method overloading is the feature of object oriented programming. It is used

to implement polymorphism. In java in a same class we can define more than one

method with same but different signature, this concept is called method overloading.

 In method overloading same method can be used in different manners. For

example in class Add, we can define 3 addition methods shown below,

41

class Add

{

 int addition(int a, int b){ return (a + b); }

 float addition(float a, float b) { return (a + b); }

 String addition(String a, String b) { return a + b; }

}

public class Sum

{

 public static void main(String args[])

 {

 Sum s1 = new Sum();

 System.out.println(s1.addition(10, 20));

 System.out.println(s1.addition(10.56 ,20.78));

 System.out.println(s1.addition(―abc‖, ‖def‖));

}

}

Figure-14 Output of Program

2.14 STATIC MEMBERS

2.14.1 STATIC MEMBER VARIABLES

 The variables declared in class can be categorized into two: Class variable

and instance variable.

 Instance variables are the variable of class which can be access using

object/instance of the class. The variable we have used in example of section are the

42

instance variable. For each object the instance variables are separately created in

memory.

 Class variable are the variables which are shared by all objects of the class.

These variables are created in memory once for the class and shared by all objects

of the class. The class variables can be accessed using class name then . and the

static variable name. No need to create object of class to access the class variable.

For creating class variable static keyword is used before its declaration.

Example: In the following example static int n can be used to count number of object

created.

class Student

{

static int n = 0;

int rollNumber = 0;

String name = "";

String course = "";

Student()//default constructor

{

 rollNumber = 0;

 name = "";

 course = "";

 Student.n++;

}

Student(int r, String n, String c) //parameterized constructor

{

 rollNumber = r;

 name = n;

 course = c;

 Student.n++;

}

void printData()

{

 System.out.println(rollNumber);

 System.out.println(name);

43

 System.out.println(course);

}

}

class Exa_Cls

{

public static void main(String args[])

{

Student s1 = new Student(1,"manan","civil");

Student s2 = new Student();

System.out.println("number of objects:"+Student.n);

}

}

Figure-15 Output of Program

2.14.2 STATIC MEMBER FUNCTION

 We can also declare a static method in a class as a member function. For

calling static method we need to use class name instead of object name. Hence we

can call the static function without creating object of the class. Also only a static

method can be called inside the static function of the class.

Example1

class A

{

static int sum(int a, int b)

{

int c = a + b;

return c;

44

}

}

public class ExStatic1

{

public static void main(String args[])

{

System.out.println(― sum : ― + A.sum(10,30));

}

}

Figure-16 Output of Program

Example 2

class A{

static void sum(int a, int b)

{

int c = a + b;

printA(c); // printA must be static if it is called inside static function sum.

}

static void printA(int x)

{

System.out.println(― sum : ― + x);

}

}

public class ExStatic2{

public static void main(String args[])

{

A.sum(10,30);

}

}

45

Figure-17 Output of Program

2.15 NESTING OF METHODS

When a method of class calling the other method of the same class is called nesting

of methods. The following example uses nesting of method.

import java.util.Scanner;

class Circle

{

int radius;

void getRadius()

{

Scanner sc=new Scanner(System.in);

Radius = sc.nextInt();

}

double area()

{

getRadius();

return(3.14*radius*radius);

}

}

public class Exa

{

public static void main(String args[])

{

Circle c1 = new Circle();

System.out.println (c1.area());

}

}

46

Figure-18 Output of Program

2.16 VECTORS

 Vector class is available in java.util package. In java array can not be shrink or

expand once it is created. Vector is a dynamic array in java which can be shrink or

grow as per the requirement. The followings are some of the constructors of Vector

class.

 Vector() it creates a vector with capacity 10.

 Vector(int size) it creates a vector with capacity specified by size.

 Methods of Vector class

1. boolean add(Object obj): it appends obj at the end of the Vector. It returns

true if the obj is successfully added.

2. void add(int index, Object obj): it inserts an obj at location specified by

index.

3. boolean addAll(Collection c): it is used to add a Vector c in calling Vector. It

returns true if the Vector c is successfully added.

4. void addAll(int index, Collection c): it inserts a Vector c at location specified

by index.

5. void clear(): it removes all elements in Vector.

6. Object clone(): it creates a clone of this Vector.

7. boolean contains(Object obj): it checks whether the obj exists in Vector or

not.

8. void ensureCapacity(int minCapacity): it increases the capacity of vector

ensuring that minCapacity elements can be stored in Vector.

9. Object get(int index): it returns object stored at index position in Vector

10. int indexOf(Object obj): it search the first occurrence of the obj and returns

its position in Vector.

11. boolean isEmpty(): checks if the Vector has elements in it.

47

12. Int lastIndexOf(Object obj): it search the last occurrence of the obj and

returns its position in Vector.

13. boolean remove(Object obj): it removes the first occurrence of obj in

Vector.

14. boolean equals(Object obj): it compares Vector with other Vector

15. Object firstElement(): it returns first element in the Vector.

16. Object lastElement(): it returns last element in the Vector.

17. Void trimToSize(): it trim the capacity of Vector to its size.

18. String toString(): it returns String form of Vector.

19. Object[] toArray(): it converts a Vector into array of Objects.

20. int size(): it returns number of elements stored in Vector.

21. int capacity(): it returns the capacity of vector.

22. void setSize (int nSize): it set the size of the Vector.

23. void setElementAt(Object obj, int index): it replace an object at index

position with obj

Example:

import java.util.Vector;

public class Exa1

{

public static void main(String args[])

{

Vector v1=new Vector(20);

v1.add("A");

v1.add("C");

v1.add(1,"B");

System.out.println("size: " + v1.size());

System.out.println("capacity " + v1.capacity());

Vector v2=(Vector)v1.clone();

System.out.println(" Vector v1 " + v1);

System.out.println(" Vector v2 " + v2);

v1.addAll(v2);

System.out.println(" Vector v1.addAll(v2): " + v1);

System.out.println(" Is B in v1:"+ v1.contains("B"));

48

System.out.println(" element at 2 : " + v1.get(2));

System.out.println(" POsition of A : " + v1.indexOf("A"));

System.out.println(" Check for empty v1: " + v1.isEmpty());

System.out.println(" Last index of A: " + v1.lastIndexOf("A"));

v1.remove("C");

System.out.println(" After removing C in v1 : " + v1);

System.out.println("Compare v1 and v2 : " + v1.equals(v2));

System.out.println(" Fisrt element of v1 : " + v1.firstElement());

System.out.println(" Last element of v1 : " + v1.lastElement());

System.out.println(" v1 to String : " + v1.toString());

}

}

Figure-19 Output of Program

2.17 WRAPPER CLASSES

 Wrapper classes are the classes whose objects wrap the primitive data types.

To treak primitive data type as a Class and Object, java provide a wrapper class for

each primitive data types. The following is the list of wrapper classes and their

corresponding primitive data types.

Primitive Data type Wrapper Class

49

boolean Boolean

byte Byte

short Short

int Integer

long Long

float Float

double Double

char Character

Table-7 list of wrapper classes and their corresponding primitive data types

Advantages of wrapper class:

1). They convert a primitive data type into object when we need to pass them as

reference argument to the function. By default the primitive data types are

passed as value into the function.

2). The Vector can store objects only. If we want to store primitive data values in

Vector, we need to convert them into objects.

 Autoboxing is an important concept related to wrapper classes. Autoboxing is

an automatic conversion of primitive data types into object of its wrapper class. The

reverse process of autoboxing is called unboxing. Unboxing is automatical

conversion of object of wrapper class into its corresponding primitive data type.

For example

1) int a = 5;

 Integer aa = a; //autoboxing

2) Vector v1 = new Vector();

v1.add(24); //autoboxing 24 into Integer object

v1.add(89);

int n=v1.firstElemen(); //unboxing

Example

class Exa3

50

{

public static void main(String args[])

{

//Autoboxing

byte a = 10;

Byte aobj = new Byte(a);

int b = 289;

Integer bobj = new Integer(b);

float c = 508.5f;

Float cobj = new Float(c);

double d = 90.3;

Double dobj = new Double(d);

char e='x';

Character eobj=e;

System.out.println("Autoboxing");

System.out.println(aobj);

System.out.println(bobj);

System.out.println(cobj);

System.out.println(dobj);

System.out.println(eobj);

//Unboxing

byte v = aobj;

int w = bobj;

float x = cobj;

51

double y = dobj;

char z = eobj;

System.out.println("Unboxing");

System.out.println(v);

System.out.println(w);

System.out.println(x);

System.out.println(y);

System.out.println(z);

}

}

Figure-20 Output of Program

 Methods of wrapper classes

The following are some of the methods of wrapper class.

 valueOf(String s)

 All wrapper class except Character class have this function. It is a

static function hence called using class name. This function coverts a String

representation of any primitive value into its corresponding wrapper class

object.

Example:

Integer a=Integer.valueOf(―100‖);

52

Byte b=Byte.valueOf(―8‖);

Double c=Double.valueOf(―10.80‖);

 valueOf(String s, int radix):

 This is a static function of Byte, Short, Inetger and Long wrapper class.

This function converts a string into corresponding wrapper class object.

However the String stores the value represented in radix form. Radix 2 is for

binary, 8 is for octal, 16 is for hexadecimal and so on.

For example

Integer a=Integer.valueOf(―101‖,2);//store 7 in a because 101 is binary of 7.

 valueOf(primitive_data_type x):

 All wrapper classes have this static function which converts a primitive

data value into its corresponding wrapper class object.

For example

Integer a = Integer.valueOf(100);

Double b = Double.valueOf(34.6);

Example

public class ExWrap1

{

public static void main(String args[])

{

// example of valueOf

System.out.println(" valueOf converts String into Wrapper class object");

Integer a=Integer.valueOf("100");

Byte b=Byte.valueOf("8");

Double c=Double.valueOf("10.80");

System.out.println("Integer: " + a);

System.out.println("Byte: " + b);

System.out.println("Double: " + c);

53

System.out.println(" valueOf converts String with differnt base into Wrapper

 class object");

Integer a1=Integer.valueOf("1110",2);

System.out.println("Integer: " + a1);

System.out.println(" valueOf converts primitive data type into Wrapper class

 object");

Integer a2 = Integer.valueOf(100);

Double b2 = Double.valueOf(34.6);

System.out.println("Integer: " + a2);

System.out.println("Integer: " + b2);

}

}

Figure-21 Output of Program

 Primitive data type conversion functions

 public byte byteValue(), public short shortValue(), public int intValue(), public

long longValue(), public float floatValue(), public float doubleValue() are the non

static functions. They need object of Wrapper class to call. The numeric wrapper

classes like Byte, Short, Integer, Long, Float, and Double has these all methods

defined in them. These methods are used to return corresponding primitive data type

value.

For example,

Integer x = new Integer(189);

int y = x.intValue();

byte z = x.byteValue();

54

float a = x.floatValue();

Example:

public class ExWrap2

{

public static void main(String args[])

{

System.out.println(" xxxValue functions converts one numeric datatype into

 other ");

Integer x = new Integer(122);

int y = x.intValue();

byte z = x.byteValue();

float a = x.floatValue();

System.out.println(" int :" + y);

System.out.println(" byte :" + z);

System.out.println(" float :" + a);

}

}

Figure-22 Output of Program

 String to primitive data type conversion functions

 public static int parseInt(String s), public static byte parseByte(String s), public

static short parseShort(String s), public static long parseLong(String s), public static

float parseFloat(String s), public static double parseDoublet(String s), public static

boolean parseBoolean(String s)

 All the wrapper class except Character class has parse function. This function

is used to convert a String argument into corresponding primitive data type value.

55

For example:

int x = Integer.parseInt(―123‖);

double y = Double.parseDouble(―123.56‖);

boolean z = Boolean.parseBoolean(―false‖);

The parse function has one more version which is,

 public static int parseInt(String s, int radix) for Integer class.

 Similarly the wrapper classes Byte, Short and Long have this function. It

converts a String s, which represents a number with base radix into primitive data

types.

For example,

int x=Integer.parseInt(―1111‖,2); //this converts a binary 1111 into integer.

This function can be used to convert string representation of binary (radix 2),

octal(radix 8) or hexadecimal (radix 16) number into decimal value.

Example:

public class ExWrap3

{

public static void main(String args[])

{

System.out.println(" parseXXX functions converts String to primitive data type");

int x = Integer.parseInt("123");

double y = Double.parseDouble("123.56");

boolean z = Boolean.parseBoolean("false");

System.out.println(" int :" + x);

56

System.out.println(" double :" + y);

System.out.println(" boolean :" + z);

System.out.println(" parseXXX functions converts a String representation of a

 number with base radix into primitive data types.");

int x1=Integer.parseInt("1111",2);

System.out.println(" decimal of 1111 is int :" + x1);

}

}

Figure-23 Output of Program

 public String toString()

 every wrapper class has this function. It is used to convert a wrapper class

object into String.

For example,

Double d=new Double(123.88);

String s=d.toString(); //stores ―123.88‖ into s

 public static String toString(primitive p)

 every wrapper class has this function. It is used to convert a primitive data

type value into String.

For example,

String s=Double.toString(123.89);

Example:

public class ExWrap4

57

{

 public static void main(String args[])

 {

 System.out.println("non static toString functions converts wrapper object to

 String ");

 Double d = new Double(123.88);

 String s = d.toString();

 System.out.println(" String : " + s);

 System.out.println(" static toString functions converts primitive data type into

 String ");

 String x1 = Double.toString(123.89);

 System.out.println(" String :" + x1);

 }

}

Figure-24 Output of Program

2.18 LET US SUM UP

Array: one dimensional and multi dimensional arrays

class: a non primitive data type which encapsulates variables and function in it.

object: an instance of class or variable of type class. The new keyword is used to

create object.

member variable: list of variables defined in class

member function: methods/functions defined within class

constructor: It is a function of a class having same name as class name. It is called

to initialized object when it is created.

Garbage collection: it automatically frees the unnecessary memory area of the

program.

58

finalize(): this method will be called by garbage collector before destroying the

object.

method overloading: In a class we can write more than one method with same

name and different signature.

static variables: They are also the class variable. All objects of a class share the

static variables defined in the class. They can be accessed using class name.

static methods: They are the method of class which calls static method inside it.

They can also be called using class name.

vector: It is a dynamic array which can be grow and shrink run time as per

requirement. It is in java.util package.

wrapper classes: For each primitive data type there is a class in java which is called

wrapper class. The wrapper class wraps the primitive data value as an object and

can have various data conversion functions.

2.19 CHECK YOUR PROGRESS

 True-False with reason:

1. Class and object are same.

2. Static member function can be called without object.

3. We can enhance capacity of Vector at rum time.

4. Constructor function can have any name.

5. We can write only one constructor function for a class.

6. We can not call static function inside non static function.

7. Instance variables are shared by all objects of the class

8. A[1] refer to the first element of the array

9. Array can be initialized.

10. We can implement matrix using single dimensional array.

 Answer the followings:

1. List all wrapper class.

2. How can we create an object of wrapper class?

3. How can we create an array of 10 integers?

4. How can we create an object of a class?

5. Give example of method overloading.

59

6. How can we convert a string ―102‖ into a number?

7. How can we find size of a vector object?

8. Compare class variable and instance variable

9. Compare Vector and array.

10. Compare class and object.

 Identify the class and its attributes and methods from following problem

statement.

1. In school software, they are storing information of each students and staff.

2. In library software, they are allowing issue and return of the book by library

members.

3. We want to design software for restaurant bill generation.

 Multiple choice questions:

1) What is output of the following code,

class Test {

 int i;

}

class Main {

 public static void main(String args[]) {

 Test t = new Test();

 System.out.println(t.i);

 }

}

(a) garbage value (b) 0

(c) compilation error (d) run time error

2) What is output of the following code,

class Test { int i;}

class Main {

 public static void main(String args[]) {

 Test t;

 System.out.println(t.i);

 }

60

}

(a) garbage value (b) 0

(c) compilation error (d) run time error

3) The default value of a static integer variable of a class in Java is?

 (a) 0 (b) 1

 (c) Garbage value (d) Null (e) -1

4) What will be printed as the output of the following program?

public class testincr

{

public static void main(String args[])

{

int i = 0;

i = i++ + i;

System.out.println(―I = ‖ +i);

}

}

 (a) I = 0 (b) I = 1

 (c) I = 2 (d) I = 3

 (e) Compile-time Error.

5) What is the stored in the object obj in following lines of code?

 box obj;

a) Memory address of allocated memory of object

b) NULL

c) Any arbitrary pointer

d) Garbage

6) Which of these keywords is used to make a class?

a) class b) struct

c) int d) none of the mentioned

7) Which of these operators is used to allocate memory for an object?

61

a) malloc b) alloc

c) new d) give

8) What is the output of this program?

 class box

 {

 int width;

 int height;

 int length;

 }

 class mainclass

 {

 public static void main(String args[])

 {

 box obj = new box();

 System.out.println(obj);

 }

 }

a) 0

b) 1

c) Runtime error

d) classname@hashcode in hexadecimal form

9) Which keyword is used by the method to refer to the object that invoked it?

a) import b) catch

c) abstract d) this

10) Which of the following is a method having same name as that of its class?

a) finalize b) delete

c) class d) constructor

11) Which operator is used by Java run time implementations to free the

memory of an object when it is no longer needed?

a) delete b) free

c) new d) none of the mentioned

62

12) Which function is used to perform some action when the object is to be

destroyed?

a) finalize() b) delete()

c) main() d) none of the mentioned

13) What is the output of this program?

 class box

 {

 int width;

 int height;

 int length;

 int volume;

 box()

 {

 width = 5;

 height = 5;

 length = 6;

 }

 void volume()

 {

 volume = width*height*length;

 }

 }

 class constructor_output

 {

 public static void main(String args[]){

 box obj = new box();

 obj.volume();

 System.out.println(obj.volume);

 }

 }

a) 100 b) 150

c) 200 d) 250

63

14) Which of the following statements are incorrect?

a) default constructor is called at the time of object declaration

b) Constructor can be parameterized

c) finalize() method is called when a object goes out of scope and is no

longer needed

d) finalize() method must be declared protected

2.20 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

 True-False with reason:

1. False. Objects are the instance of class.

2. True.

3. True.

4. False. Constructor function must have name as class name.

5. False. We can write multiple constructor for a class with different argument

in each.

6. False. We can call static function inside non static function.

7. False. Class variables/static variables are shared by all objects of the

class

8. False. A[0] refer to the first element of the array

9. True.

10. False. We can implement matrix using two dimensional array

 Answer the followings:

1. Wrapper Classes:

Boolean, Byte, Short, Integer, Long, Float, Double, Character

2. To create an object of wrapper class:

Boolean a=true;

Boolean x=a;

3. To create an array of 10 integers :

 int[] a=new int[10];

4. To create an object of a class:

Class_Name obj= new Class_Name();

5. Example of method overloading:

64

class Ex_Add

{

 static int add(int a,int b){return a+b;}

 static int add(int a,int b,int c){return a+b+c;}

}

class ExOverloading

{

 public static void main(String[] args)

 {

 System.out.println(Adder.add(11,11));

 System.out.println(Adder.add(11,11,11));

 }

}

6. To convert a string ―102‖ into a number:

 int a= Integer.parseInt(―102‖);

7. The size() method of Vector class in Java is used to get the size of the

Vector.

8. Class variable v/s Instance variable

Class variable Instance variable

They are static member

variables of class

They are non static member

variables of class

They are shared among all

object of class

They are separately created

for each object

To access class variable

class name is used.

To access instance variable

object name is used.

9. Vector v/s array.

Vector Array

Vector is resizable array The length of an Array is

fixed.

Vector is synchronized Array is not synchronized.

65

Vector can store any type of

objects

Array can store same type of

objects

Vector is slow to access. Array supports efficient

random access to the

members

10. Class v/s object.

Class Object

It is a blueprint/structure of

object.

It is an instance of class

Class is a group of similar

entities

Object is a real world entity

Class is declared once Object is created many times

as per requirement.

Class doesn't allocated

memory when it is created.

Object allocates memory

when it is created.

 Identify the class and its attributes and methods from following problem

statement.

1. In school software, they are storing information of each students and staff.

Class name : Student

Attributes : enrollment number, name, course, address, phone number,

semester

Methods: enroll_course(int enr_no, String crs), print_data(), get_data()

Class name : Staff

66

Attributes : Employ ID, name, designation, address, phone number,

qualification

Methods: enroll_course(int enr_no, String crs), print_data(), get_data()

2. In library software, they are allowing issue and return of the book by library

members.

a. Class name: Member

b. Attributes : Library ID, name, address, phone number

c. Methods: add_member(), searchMember(), printAllMembers(),

deleteMember()

d. Class name: Book

e. Attributes : bookID, title, author, publisher, price, qty

f. Methods: addBook(), searchBook(), printAllBooks(), deleteBook()

g. Class name: Book_transaction

h. Attributes: bookID, Library ID, date_issue, date_return, fine.

i. Methods : bookIssue(), bookReturn()

3. We want to design software for restaurant bill generation.

a. Customer : custId, custName, custAddr, custPhone

b. Methods : addCust(), searchCust(), deleteCust()

c. Item: itemID, itemName, itemCategory, itemPrice

d. Methods : addItem(), searchItem(), deleteItem()

e. Bill : billID, custID, itemID, qty, billDate, billAmount

f. Methods : billGeneration(), billPayment(), printBill()

 Multiple choice questions.

1) b

2) c

3) a

4) b

5) b

6) a

7) c

8) d

9) d

10) d

11) d
12) b
13)a

67

2.21 FURTHER READING

1. ―Java 2: The Complete Reference‖ by Herbert Schildt, McGraw Hill
Publications.

2. ―Effective Java‖ by Joshua Bloch, Pearson Education.

2.22 ASSIGNMENTS

 Write java program for following:

1) Create a class name meter which represents a distance in meter and

centimeter. Also create class name kilometer which represents distance in km

and meter. In both class write a function which converts one class to other.

2) Create a class name Doctor with properties and methods. The properties can

be name, phone number, qualification, specialization etc. The methods

include getting information of doctor and printing them.

3) Sort numbers in descending order.

4) Create a menu driven program for matrix operations like add, subtract, and

multiply.

5) Find maximum and minimum from the n numbers.

6) Create a class student with necessary properties, methods and constructor.

Overload a function name search in this class which allows us to search

student based on roll number, name and city.

7) To print transpose of matrix.

8) To implement pop and push operation of stack using array.

