

240

Unit 1: Multithreaded
Programming-I

Unit Structure

1.1 Learning Objectives

1.2 Outcomes

1.3 Introduction

1.4 Multithreading: An Introduction and Advantages

1.5 The Main Thread

1.6 Java Thread Model

1.7 Thread states and life cycle

1.8 The Thread class and Runnable interface

1.9 Thread creation

1.10 Thread Priorities

1.11 Let us sum up

1.12 Check your Progress: Possible Answers

1

241

1.1 LEARNING OBJECTIVE

 Understand purpose of multitasking and multithreading

 Describe java’s multithreading model

1.2 OUTCOMES

After learning the contents of this chapter, the reader must be able to :

 Describe the concept of multithreading

 Explain the Java thread model

 Create and use threads in program

 Describe how to set the thread priorities

1.3 INTRODUCTION

 Multitasking – performing multiple tasks/jobs simultaneously/concurrently.

There are two types of concurrency- Real and Apparent. Personal Computer has

only a single CPU; so, you might have a question, how it can execute more than one

task at the same time? With single microprocessor systems, only a single task can

run at a time. But multitasking system increase the utilization of CPU. The CPU

quickly switches back and forth between several tasks to create an illusion that the

tasks are performing/ executing at the same time. For example, a user/system can

request the operating system to execute program P1, P2 and P3 by having it spawn

a separate process for each program and scheduled it independently. These

programs can run in a concurrent manner, depending upon the multiprocessing

(multiprogramming) features supported by the operating system. A process is

memory image/context of a program that is created when the program is executed.

In single-processor systems support apparent concurrency only. Real concurrency is

not supported by it. Apparent concurrency is the characteristic exhibited when

multiple tasks execute. There are two types of multitasking –

1. Process based multitasking and

2. Thread based multitasking.

242

 A thread is single sequence of execution that can run independently in an

application. Uses of thread in programs are good in terms of resource utilization of

the system on which application(s) is running. There are several advantages of

thread based multitasking, so Java programming language support thread based

multitasking.

 This unit covers the very important concept of multithreading in programming.

Multithreading differs from multiprocessing. Multithreaded programming is very

useful in network and Internet applications development. In this unit you will learn

what is multithreading, how thread works, how to write programs in Java using

multithreading. Also, in this unit will be explained about thread-properties,

synchronization, and interthread communication.

1.4 MULTITHREADING: AN INTRODUCTION AND
ADVANTAGES

 A multithreaded program contains two or more parts that can run

simultaneously. Each such part of a program is called a thread, and each thread

defines a separate path of execution. Thus, multithreading is a specialized form of

multitasking. This means that multiples threads are simultaneously execute multiple

sequences of instructions. Each instruction sequence has its own unique flow of

control that is independent of all others. These independently executed instruction

sequences are known as threads. Threads allow multiple activities to proceed

concurrently in the same program. . For example, a text editor can edit text at the

same time that it is auto save a document, as long as these two actions are being

performed by two separate threads. But remember, threads are not complete

processes in themselves.

 The Java Virtual Machine supports multithreaded programming, which allows

you to write programs that execute many tasks simultaneously. The Java run-time

provides simple solution for multithread synchronization that enables you to

construct smoothly running interactive systems. Java’s easy-to-use approach to

multithreading allows you to think about the specific behavior of your program, not

the multitasking subsystem.

243

 Advantages of Multithreading

The advantages of multithreading are:

1. Concurrency can be used within a process to implement multiple instances of

simultaneous task.

2. Multitasking threads require less overhead than multitasking processes.

Processes are heavyweight tasks that require their own separate address

spaces. Threads, on the other hand, are lightweight. They share the same

address space and cooperatively share the same heavyweight process.

3. Multithreading requires less processing overhead than multiprocessing

because concurrent threads are able to share common resources more

efficiently.

4. Multithreading enables programmers to write very efficient programs that

make maximum use of the CPU.

5. Inter-thread communication is less expensive.

1.5 THE MAIN THREAD

 When you execute a java program, usually a single non-daemon thread

begins running immediately. This is called the “main” thread of your program,

because it is the one that is executed when your program begins. The main thread is

very important for two reasons:

1. It is the thread from which other “child” threads will be spawned. And,

2. It must be the last thread to finish execution because it performs various

cleanup and shutdown actions.

 The main thread is created automatically when your program is started. The

main thread of Java programs is accessed and controlled through methods of

Thread class.

 You can get a reference of current running thread by calling currentThread()

method of the Thread class, which is a static method.

244

The signature of the method is:

 public static Thread currentThread();

 By using this method, you obtain a reference to the thread in which this

method is called. Once you have a reference to the thread, you can control it.

For example, the following code segment obtain a reference of the main thread and

get the name of the main thread is by calling getName () and rename it

“MyMainThread” using method setName(String).

// Program-1

class ThreadDemo {

 public static void main(String [] args){

 Thread t = Thread.currentThread();

 System.out.println("Current thread name is: " + t.getName());

 t.setName("MyMainThread");

 System.out.println("New name is: " + t.getName());

 }

}

Output:

Current thread name is: main

New name is: MyMainThread

 In java every thread has a name for identification purposes. More than one

thread may have the same name. If a name is not specified when a thread is

created, a new name is generated for it.

Check Your Progress 1

1) How does multithreading achieved on a computer with a single CPU?

2) Name two ways to create a thread

3) Make suitable change in “Program-1” and find out a priority of the main thread

as well as the name of thread group in which the main thread belong.

4) How would you re-start a dead Thread?

5) State the advantages of multithreading.

245

6) Write an application that executes two threads. One thread which is display

‘A’ every 1000 milliseconds, and the another display ‘B’ every 3000

milliseconds. Create the first thread by implementing Runnable interface and

the second one by extending Thread class.

1.6 THE JAVA THREAD MODEL

 The Java run-time environment depends on threads for many things, and all

the class libraries are designed with multithreading in mind. For that, Java uses

threads to enable the entire environment to be asynchronous. This helps to you to

write very efficient programs that make maximum use of the CPU, because idle time

can be kept to a minimum and preventing the waste of CPU cycles.

1.7 THREAD STATES AND LIFE CYCLE

Thread pass through several stages during its life cycle. A thread can be running. It

can be ready to run as soon as it gets CPU time. A running thread can be blocked

when waiting for a resource. At any time, a thread can be terminated, which halts its

execution immediately. Once terminated, a thread cannot be resumed.

Figure-95 Thread States

Ready to run

Blocked/ Waiting/ Timed
Waiting

Start()

New

Sleep done, I/O complete, lock available,
notify

Dead

Sleep, block on I/O,
wait for lock, wait

run() method exits

Running

246

 The thread exists as an object; threads have several well-defined states in

addition to the dead states. These states are:

 New Thread

 When a new thread (thread object) is created, it is in the new state. The

thread has not yet started to run when thread is in this state. When a thread in the

new state, it’s code is yet to be run and hasn’t started to execute.

 Runnable State

 A thread that is ready to run is moved to runnable state. In this state, a thread

might actually be running or it might be ready run at any instant of time. It is the

responsibility of the thread scheduler to give the thread, time to run. A multi-threaded

program allocates a fixed amount of time to each individual thread. Each and every

thread runs for a short while and then pauses and relinquishes the CPU to another

thread, so that other threads can get a chance to run. When this happens, all such

threads that are ready to run, waiting for the CPU and the currently running thread

lies in runnable state.

 Running State

Threads are born to run, and a thread is said to be in the running state when it is

actually executing means thread gets CPU. It may leave this state for a number of

reasons.

 Blocked/Waiting/Timed Waiting state

 When a thread is temporarily inactive, then it’s in one of the following states:

 Blocked

 Waiting

 Timed Waiting

 For example, when a thread is waiting for I/O to complete, it lies in the

blocked state. It’s the responsibility of the thread scheduler to reactivate and

schedule a blocked/waiting thread. A thread in this state cannot continue its

execution any further until it is moved to runnable state. Any thread in these states

do not consume any CPU cycle.

247

 A thread is in the blocked state when it tries to access a protected section of

code that is currently locked by some other thread. When the protected section is

unlocked, the schedule picks one of the threads which is blocked for that section and

moves it to the runnable state. A thread is in the waiting state when it waits for

another thread on a condition. When this condition is fulfilled, the scheduler is

notified and the waiting thread is moved to runnable state.

 If a currently running thread is moved to blocked/waiting state, another thread

in the runnable state is scheduled by the thread scheduler to run. It is the

responsibility of thread scheduler to determine which thread to run.

 A thread lies in timed waiting/temporality sleep state when it calls a method

with a time out parameter. A thread lies in this state until the timeout is completed or

until a notification is received. For example, when a thread calls sleep or a

conditional wait, it is moved to time waiting state.

 Dead State

 A thread terminates because of either of the following reasons:

 The exit method of class Runtime has been called and the security manager

has permitted the exit operation to take place.

 All threads that are not daemon threads have died, either by returning from

the call to the run method or by throwing an exception that propagate beyond

the run method.

 A thread that lies in this state does no longer consume any cycles of CPU.

After a thread reaches the dead state, then it is not possible to restart it.

1.8 THE THREAD CLASS AND RUNNABLE INTERFACE

 Java’s multithreading organization is built upon the Thread class, its methods,

and its companion interface, Runnable. Thread encapsulates a thread of execution.

To create a new thread, your program will either extend Thread or implement the

Runnable interface. The Thread class defines several methods that help manage

threads. Some of that will be used in this chapter are follows:

248

 Constructors of Thread class

Thread()

Thread(Runnable target)

Thread (Runnable target, String name)

Thread(String name)

Thread(ThreadGroup group, Runnable target)

Thread(ThreadGroup group, Runnable target, String name)

Thread(ThreadGroup group, Runnable target, String name, long stackSize)

Thread(ThreadGroup group, String name)

 Methods of Thread class

Methods Description

public static Thread

currentThread()

Returns a reference to the currently executing

thread object.

public String getName() Obtain a thread’s name

public int getPriority() Obtain a thread’s priority

public boolean isAlive() Determine if a thread is still running

public void join() Wait for a thread to terminate

public void run() Entry point for the thread and execution of it

begins.

public void sleep() Suspend a thread for a period of time

public void start() Start a thread by calling its run method.

public void setName(String name) Change name of the thread

public void setPriority(int priority) Changes the priority of thread

public static void yield() Used to pause temporarily to currently

executing thread object and allow other

threads to execute.

249

public static int activeCount() Returns the number of active threads in the

current thread's thread group.

 Table-9 Methods of Thread cladd

 The Thread class defines three int static constants that are used to specify the

priority of a thread. These are MAX_PRIORITY, MIN_PRIORITY, and

NORM_PRIORITY. They represent the maximum, minimum and normal thread

priorities.

1.9 THREAD CREATION

 Java has built support to create a thread by instantiating an object of type

Thread. Java lets you create a thread one of two ways:

1. By extending the Thread class.

2. By implementing the Runnable interface.

 Thread class in the java.lang package allows you to create and manage

threads. The thread class provides the capability to create thread objects, each with

its own separate flow of control. The signature of the class is:

public class java.lang.Thread extends java.lang.Object implements

java.lang.Runnable

 Extending Thread class

 In the first approach, you create a child of the java.lang.Thread class and

override the run() method.

class EvenThread extends Thread{

 public void run(){

 //Logic for the thread

}

}

250

 Here the class EvenThread extends Thread. The logic for the thread is written

in run() method. The complexity of run() method may be simple or complex is

depending on what would you like to performed in you thread.

The program can create an object of the thread by

EvenThread et = new EvenThread(); // Instantiates the EvenThread class

When you create an instance of child of Thread class, you invoke start() method to

cause the thread to execute. The start() method is inherited from the Thread class. It

register the thread with scheduler and invokes the run() method. Your logic for the

thread is implemented in the run() method.

Et.start(); // invokes the start() method of that object to start execution of thread.

Now let us see the program given below for creating threads by inheriting the Thread

class. The program prints even numbers after every one second interval.

// Program-2

class EvenThread extends Thread {

 EvenThread(String name){

 super(name);}

 public void run(){

 for(int i=1; i<11; i++){

 if(i%2==0)

 System.out.println(this.getName() + " :" + i);

 try{

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 System.out.println (" Thread is Interrupted");

 }

 }

 }

}

class ThreadDemoOne{

 public static void main(String [] args){

 EvenThread et1 = new EvenThread("Thread 1 : ");

251

 et1.start();

 EvenThread et2 = new EvenThread("Thread 2 : ");

 et2.start();

 while(et1.isAlive() || et2.isAlive()){}

 }

}

Output :

Thread 1 : 2

Thread 2 : 2

Thread 1 : 4

Thread 2 : 4

Thread 2 : 6

Thread 1 : 6

Thread 2 : 8

Thread 1 : 8

Thread 2 : 10

Thread 1 : 10

 Above output shows how two threads execute in sequence, displaying

information on the console. The program creates two threads of execution, et1, and

et2. The threads display even numbers from 1 to 10, by interval of 1 second.

 Implementing Runnable

There is another way to create thread. Declare a class that implements

java.lang.Runnable interface. The Runnable interface contain on one method, that is

public void run(). The run () provides entry point into your thread.

class EvenRunnable implements Runnable{

 public void run(){

 //Logic for the thread

}

}

The program can start an instance of the thread by using following code:

EvenRunnable et = new EvenRunnable ();

252

Thread t = new Thread(et);

t.start();

The first statement creates an object of EvenRunnable class. The second statement

creates an object of thread class. A reference of EvenRunnble object is provided as

argument to the constructor. The last statement starts the thread.

Now let us see the program given below for creating threads by implementing

Runnable.

// Program-3

class EvenRunnable implements Runnable {

String name=””;

EvenRunnable (String name){

 this.name = name;

 }

 public void run(){

 for(int i=1; i<11; i++){

 if(i%2==0)

 System.out.println(Thread.currentThread().getName() + " :" + i);

 try{

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 System.out.println (" Thread is interrupted");

 }

 }

 }

}

class ThreadDemoTwo{

 public static void main(String [] args){

 EvenThread et1 = new EvenThread("Thread 1 : ");

 Thread t1 = new Thread(et1);

 t1.start();

 EvenThread et2 = new EvenThread("Thread 2 : ");

 Thread t2 = new Thread(et2);

 t2.start();

253

 while(t1.isAlive() || t2.isAlive()){}

 }

}

Output:

Thread 1 : 2

Thread 2 : 2

Thread 1 : 4

Thread 2 : 4

Thread 2 : 6

Thread 1 : 6

Thread 2 : 8

Thread 1 : 8

Thread 2 : 10

Thread 1 : 10

 This program is similar to previous program and also gives same output. The

advantage of using the Runnable interface is that your class does not need to extend

the thread class. This is a very helpful feature when you create multithreaded

program in that your class already extending for some other class. The only

disadvantage of this approach is that you have to do some more work to create and

execute your own threads.

 Choosing an Approach

At this point, you might be questioning why Java has two ways to create child

threads, and which approach is better.

Extending Thread class allows you to modify other overridable methods of

the Thread class, if should you wish to do so. Extending Thread class will not give

you an option to extend any other class. But if you implement Runnable interface you

could extend other classes in your class. Advantages of implementing Runnable are

1. You have freedom to extend any other class

2. You can implement more interfaces

3. You can use you Runnable implementation in thread pools

254

1.10 THREAD PRIORITIES

 In java every thread has a priority. Threads with higher priority are executed in

preference to threads with lower priority. When code running in some thread creates

a new Thread object, the new thread has its priority initially set equal to the priority of

the creating thread. Thread priority is an integer value that specifies the relative

priority of one thread to another. A thread can voluntarily relinquish control. Threads

relinquish control by explicitly yielding, sleeping, or blocking on pending Input/ Output

operations. In this scenario, all other threads are examined, and the highest- priority

thread that is ready to run gets the chance to use the CPU.

 A higher-priority thread can preempt a low priority thread. In this case, a

lower-priority thread that does not yield the processor is forcibly pre-empted. In

cases where two threads with the same priority are competing for CPU cycles, the

situation is handled differently by different operating systems.

 Java thread class has defined three constants NORM_PRIORITY,

MIN_PRIORITY and MAX_PRIORITY. Any thread priority lies between

MIN_PRIORITY and MAX_PRIORITY. The value of NORM_PRIORITY is 5,

MIN_PRIORITY is 1 and MAX_PRIORITY is 10.

// Program-5

class ThreadPriorityDemo

{

public static void main (String [] args)

{

try

 {

 Thread t1 = new Thread("Thread1");

 Thread t2 = new Thread("Thread2");

 System.out.println ("Before any change in default priority :");

 System.out.println("The Priority of "+ t1.getName() +" is "+ t1.getPriority());

 System.out.println("The Priority of "+ t1.getName() +" is "+ t2.getPriority());

//change in priority

255

t1.setPriority(7);

t2.setPriority(8);

System.out.println ("After changing in Priority :");

System.out.println("The Priority of "+ t1.getName() +" is "+
 t1.getPriority());

System.out.println("The Priority of "+t1.getName() +" is "+ t2.getPriority());

} catch (Exception e) {

System.out.println("main thread interrupted");

}

}

}

Output:

Before any change in default priority :

The Priority of Thread1 is 5

The Priority of Thread1 is 5

After changing in priority :

The Priority of Thread1 is 7

The Priority of Thread1 is 8

Check Your Progress 2

1) How can we create a Thread in Java?

2) How can we pause the execution of a Thread for specific time?

3) What do you understand about Thread Priority?

1.11 LET US SUM UP

This chapter described the functioning of multithreading in Java. Also you have

learned what the main thread, its purpose and when it is created in a Java program.

Various states of threads are described in this chapter. This chapter also explained

how threads are created using Thread class and Runnable interface. It explained

how thread priority is used to determine which thread is to execute next.

256

1.12 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Check Your Progress 1

1) In single CPU system, the process/thread scheduler allocates executions

time to multiple processes/threads. By quickly switching between

executing processes/threads, it creates the illusion that tasks executes

simultaneously.

2)

1. By extending the Thread class

2. By implementing the Runnable interface.

3) class ThreadDemo {

 public static void main(String [] args){

 Thread t = Thread.currentThread();

 System.out.println("Current thread name is: " + t.getName());

 System.out.println("The priority of main thread is " + t.getPriority());

 t.setName("MyMainThread");

 System.out.println("New name is: " + t.getName());

 System.out.println("The name of thread group is " +

t.getThreadGroup().getName());

 }

}

Output:

Current thread name is: main

New name is: MyMainThread

4) You cannot re-start a dead Thread. Once a Thread has run, and is dead, it

is a class like another. You can access the data of the instance and call

methods on the Thread class. You can call the run() method of the dead-

Thread. But it is not anymore as a Thread. It will not be scheduled

anymore by the Thread Scheduler.

5)

257

1) Make optimal use of CPU.

2) Improves performance of an application.

3) Threads share the same address space so it saves the memory.

4) Context switching between threads is usually less expensive than

between processes.

5) Cost of communication between threads is relatively low

6) Provide concurrent execution of multiple instances of different task or

services.

6)

class AThread implements Runnable {

 Thread t=null;

 AThread()

 {

 t = new Thread(this);

 t.start();

 }

 public void run(){

 while(true){

 try{

 Thread.sleep(1000);

 System.out.println("A");

 } catch (InterruptedException e) {

 System.out.println (" Thread is Interrupted");

 }

 }

 }

}

class BThread extends Thread {

 public void run(){

 while(true){

 try{

 Thread.sleep(3000);

 System.out.println("B");

258

 } catch (InterruptedException e) {

 System.out.println (" Thread is Interrupted");

 }

 }

 }

}

class ThreadDemo{

 public static void main(String [] args){

 AThread a = new AThread();

 BThread b = new BThread();

 b.start();

 try{

 a.join();

 b.join();

 } catch (InterruptedException e) {}

 }

}

Check Your Progress 2

1) There are two ways to create Thread in Java –

a. By implementing Runnable interface and then creating a Thread

object from it

b. By extending the Thread Class.

2) We can use sleep() method of Thread class to pause the execution of

Thread for certain time.

3) In Java, every thread has a priority, usually higher priority thread gets

precedence in execution but it depends on Thread Scheduler

implementation that is OS dependent. We can specify the priority of thread

but it doesn’t guarantee that higher priority thread will get executed before

lower priority thread.

	2) How can we pause the execution of a Thread for specific time?
	3) What do you understand about Thread Priority?
	Check Your Progress 1
	Check Your Progress 2

