
81

Unit-1: Activities

Unit Structure

2.1 Learning Objectives

2.2 Introduction

2.3 What is activity?

2.4 Configuring the AndroidManifest.xml file

2.5 Life Cycle of an Activity

2.6 Understanding Life Cycle of an Activity

2.7 Context

2.8 Activity Transition

2.9 Let us sum up

2.10 Check your Progress: Possible Answers

2.11 Further Reading

2.12 Assignment

2.13 Activities

1

82

1.0 Learning Objectives

After studying this unit, the students will be able to

 Understand the activity and life cycle of an activity

 Configure activity in AndroidManifest.xml file

 Know activity transition

1.1 Introduction

Generally a program is defined in terms of functionality and data, and an Android

application is not an exception. It performs processing, show information on the

screen, and takes data from a variety of sources.

To Develop Android applications for mobile devices with resource constraint requires

a systematic understanding of the application lifecycle. Important terminology for

application building blocks terms are Context, Activity, and Intent. This unit

introduces you with the most important components of Android applications and

provides you with a more detailed understanding of how Android applications

function and interact with one another.

The Activity class is a crucial component of an Android app, and the way activities

are launched and put together is a fundamental part of the platform's application

model. Unlike programming paradigms in which apps are launched with a main()

method, the Android system initiates code in an Activity instance by invoking specific

callback methods that correspond to specific stages of its lifecycle.

This document introduces the concept of activities, and then provides some

lightweight guidance about how to work with them. For additional information about

best practices in architecting your app, see Guide to App Architecture.

1.2 What is activity?

The mobile-app experience differs from its desktop counterpart in that a user's

interaction with the app doesn't always begin in the same place. Instead, the user

83

journey often begins non-deterministically. For instance, if you open an email app

from your home screen, you might see a list of emails. By contrast, if you are using a

social media app that then launches your email app, you might go directly to the

email app's screen for composing an email.

The Activity class is designed to facilitate this paradigm. When one app invokes

another, the calling app invokes an activity in the other app, rather than the app as

an atomic whole. In this way, the activity serves as the entry point for an app's

interaction with the user. You implement an activity as a subclass of the Activity

class.

An activity provides the window in which the app draws its UI. This window typically

fills the screen, but may be smaller than the screen and float on top of other

windows. Generally, one activity implements one screen in an app. For instance, one

of an app‘s activities may implement a Preferences screen, while another activity

implements a Select Photo screen.

Most apps contain multiple screens, which means they comprise multiple activities.

Typically, one activity in an app is specified as the main activity, which is the first

screen to appear when the user launches the app. Each activity can then start

another activity in order to perform different actions. For example, the main activity in

a simple e-mail app may provide the screen that shows an e-mail inbox. From there,

the main activity might launch other activities that provide screens for tasks like

writing e-mails and opening individual e-mails.

Although activities work together to form a cohesive user experience in an app, each

activity is only loosely bound to the other activities; there are usually minimal

dependencies among the activities in an app. In fact, activities often start up

activities belonging to other apps. For example, a browser app might launch the

Share activity of a social-media app.

To use activities in your app, you must register information about them in the app‘s

manifest, and you must manage activity lifecycles appropriately. The rest of this

document introduces these subjects.

84

1.3 Configuring the AndroidManifest.xml

For your app to be able to use activities, you must declare the activities, and certain

of their attributes, in the manifest.

Declare activities: To declare your activity, open your manifest file and add an

<activity> element as a child of the <application> element. For example:

<manifest ... >

 <application ... >

 <activity android:name=".ExampleActivity" />

 ...

 </application ... >

 ...

</manifest >

The only required attribute for this element is android:name, which specifies the

class name of the activity. You can also add attributes that define activity

characteristics such as label, icon, or UI theme.

Declare intent filters: Intent filters are a very powerful feature of the Android

platform. They provide the ability to launch an activity based not only on an explicit

request, but also an implicit one. For example, an explicit request might tell the

system to ―Start the Send Email activity in the Gmail app". By contrast, an implicit

request tells the system to ―Start a Send Email screen in any activity that can do the

job." When the system UI asks a user which app to use in performing a task, that‘s

an intent filter at work.

You can take advantage of this feature by declaring an <intent-filter> attribute in the

<activity> element. The definition of this element includes an <action> element and,

optionally, a <category> element and/or a <data> element. These elements combine

to specify the type of intent to which your activity can respond. For example, the

following code snippet shows how to configure an activity that sends text data, and

receives requests from other activities to do so:

85

<activity android:name=".ExampleActivity" android:icon="@drawable/app_icon">

 <intent-filter>

 <action android:name="android.intent.action.SEND" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:mimeType="text/plain" />

 </intent-filter>

</activity>

In this example, the <action> element specifies that this activity sends data.

Declaring the <category> element as DEFAULT enables the activity to receive

launch requests. The <data> element specifies the type of data that this activity can

send. The following code snippet shows how to call the activity described above

// Create the text message with a string

Intent sendIntent = new Intent();

sendIntent.setAction(Intent.ACTION_SEND);

sendIntent.setType("text/plain");

sendIntent.putExtra(Intent.EXTRA_TEXT, textMessage);

// Start the activity

startActivity(sendIntent);

If you intend for your app to be self-contained and not allow other apps to activate its

activities, you don't need any other intent filters. Activities that you don't want to

make available to other applications should have no intent filters, and you can start

them yourself using explicit intents.

Declare permissions: You can use the manifest's <activity> tag to control which

apps can start a particular activity. A parent activity cannot launch a child activity

unless both activities have the same permissions in their manifest. If you declare

a <uses-permission> element for a particular activity, the calling activity must have a

matching<uses-permission> element.

https://developer.android.com/guide/topics/manifest/activity-element.html
https://developer.android.com/guide/topics/manifest/uses-permission-element.html
https://developer.android.com/guide/topics/manifest/uses-permission-element.html

86

For example, if your app wants to use a hypothetical app named SocialApp to share

a post on social media, SocialApp itself must define the permission that an app

calling it must have:

<manifest>

<activity android:name="...."

 android:permission=‖com.google.socialapp.permission.SHARE_POST‖

/>

Then, to be allowed to call SocialApp, your app must match the permission set in

SocialApp's manifest:

<manifest>

<uses-permission android:name="com.google.socialapp.permission.SHARE_POST"

/>

</manifest>

Check your progress-1

a) When one app invokes another, the calling app invokes an activity in the other

app, rather than the app as an atomic whole (True/False)

b) Most apps contain multiple screens, which means they comprise multiple _____

(A) Activities (B) Services (C) Contexts (D) Intents

c) You can use activities in your app, without registering the information about them

in the app‘s manifest,

d) By default, the activity created for you contains the ________ event

e) The only required attribute for <activity> element is __________

1.4 Life Cycle of an Activity

The Activity class is an important for application's whole lifecycle. Android

applications can be multi-process, and the multiple applications to run concurrently if

memory and processing power is available. Applications can have background

processes, and applications can be interrupted/paused when events such as

message or phone calls occur. There can be only one active application visible to the

user at a time or in other words only a single Activity is in the foreground at any given

time.

87

Activities in the Android operating system are managed using an activity stack.

When a new activity is started, it is placed on the top of the stack and becomes the

running/foreground activity the previous activity always remains below it in the stack,

and will not come to the foreground again until the new activity exits.

Activity States

An activity has essentially four states:

State Description

Active or running When an activity is in the foreground of the screen (at the top of

the stack).

Paused If an activity has lost focus but is still visible, it is paused. A

paused activity maintains all state and member information and

remains attached to the window manager, but can be killed by the

system in extreme low memory situations.

Stopped If an activity is completely hidden by another activity, it is stopped.

It still retains all state and member information, it will often be

killed by the system when memory is needed elsewhere.

Destroyed If an activity is paused or stopped, the system can drop the

activity from memory by either asking it to finish, or simply killing

its process. When it is displayed again to the user, it must be

completely restarted and restored to its previous state.

Table-11

Activity Events

The Activity base class defines a series of events that governs the life cycle of an

activity. The Activity class defines the following events:

Event Description

onCreate() Called when the activity is first created

onStart() Called when the activity becomes visible to the user

onResume() Called when the activity starts interacting with the user

onPause() Called when the current activity is being paused and the previous

activity is being resumed

88

onStop() Called when the activity is no longer visible to the user

onDestroy() Called before the activity is destroyed by the system

onRestart() Called when the activity has been stopped and is restarting again

Table-12

By default, the activity created for you contains the onCreate() event. Within this

event handler is the code that helps to display the UI elements of your screen.

Figure-45: important state paths of an Activity

The above figure shows the important state paths of an Activity. The square

rectangles represent callback methods you can implement to perform operations

when the Activity moves between states. The colored ovals are major states the

Activity can be in.

89

1.5 Understanding Life Cycle of an Activity

The best way to understand the various stages experienced by an activity is to

create a new project, implement the various events, and then subject the activity to

various user interactions.

1. Create a New Android Studio Project as discussed in section 1.4 with project

name ActivityDemo and Main Activity name as MainActivity

2. In the MainActivity.java file, add the following statements in bold:

package in.edu.baou.activitydemo;

import android.util.Log;

public class MainActivity extends ActionBarActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);
 Log.d("Event", "In the onCreate() event");

 }
 public void onStart()
 {
 super.onStart();
 Log.d("Event", "In the onStart() event");
 }
 public void onRestart()
 {
 super.onRestart();
 Log.d("Event", "In the onRestart() event");
 }

 public void onResume()
 {
 super.onResume();
 Log.d("Event", "In the onResume() event");
 }
 public void onPause()
 {
 super.onPause();
 Log.d("Event", "In the onPause() event");
 }
 public void onStop()
 {
 super.onStop();
 Log.d("Event", "In the onStop() event");

90

 }
 public void onDestroy()
 {
 super.onDestroy();
 Log.d("Event", "In the onDestroy() event");
 }

}

3. Press Shift+F10 or ‗Run App‘ button in taskbar. It will launch following dialog box.

Press OK.

Figure-46

4. When the activity is first loaded, you should see the following in the LogCat

window.

Figure-47

5. Now press the back button on the Android Emulator, observe that the following is

printed:

Figure-48

91

6. Click the Home button and hold it there. Click the ActivityDemo icon and observe

the following:

Figure-49

7. On Android Emulator from notification area open settings on so that the activity is

pushed to the background. Observe the output in the LogCat window:

Figure-50

8. Notice that the onDestroy() event is not called, indicating that the activity is still in

memory. Exit the settings by pressing the Back button. The activity is now visible

again. Observe the output in the LogCat window:

Figure-51

Please note that the onRestart() event is now fired, followed by the onStart() and

onResume() events.

92

This application uses logging feature of Android. To add logging support to

ActivityDemo app, edit the file MainActivity.java to add the following import statement

for the Log class:

import android.util.Log;

Logging is a valuable resource for debugging and learning Android. Android logging

features are in the Log class of the android.util package. Some helpful methods in

the android.util.Log class are shown in Table. We have used Log.d() method to print

message in LogCat Window when particular event of activity fired.

Method Purpose

Log.e() Log errors

Log.w() Log warnings

Log.i() Log information messages

Log.d() Log debug messages

Log.v() Log verbose messages

 Table-13

1.6 Context

As the name suggests, it is the context of current state of the application/object. It

lets newly created objects understand what has been going on. Typically you call it

to get information regarding other part of your program (activity,

package/application). The application Context is the central location for all top-level

application functionality. The Context class can be used to manage application-

specific configuration details as well as application-wide operations and data. Use

the application Context to access settings and resources shared across multiple

Activity instances.

Retrieving the Application Context

You can get the context by invoking getApplicationContext(), getContext(),

getBaseContext() or this (when in the activity class). You can retrieve the Context

for the current process using the getApplicationContext() method, like this: Context

context = getApplicationContext();

93

Uses of the Application Context

After you have retrieved a valid application Context, it can be used to access

application-wide features and services. Typical uses of context are:

1) Creating new views, adapters, listeners object

TextView tv = new TextView(getContext());

ListAdapter adapter = new SimpleCursorAdapter(getApplicationContext(), ...);

2) Retrieving Application Resources: You can retrieve application resources

using the getResources() method of the application Context. The most

straightforward way to retrieve a resource is by using its resource identifier, a

unique number automatically generated within the R.java class.The following

example retrieves a String instance from the application resources by its resource

ID:

String greeting = getResources().getString(R.string.settings);

3) Retrieving Shared Application Preferences: You can retrieve shared

application preferences using the getSharedPreferences() method of the

application Context. The SharedPreferences class can be used to save simple

application data, such as configuration settings.

4) Accessing Other Application Functionality Using Context: The application

Context provides access to a number of other top-level application features.

Here are a few more things you can do with the application Context:

 Launch Activity instances

 Inspect and enforce application permissions

 Retrieve assets packaged with the application

 Request a system service (for example, location service)

 Manage private application files, directories, and databases

94

1.7 Activity Transition

In the course of the lifetime of an Android application, the user might transition

between a numbers of different Activity instances. At times, there might be multiple

Activity instances on the activity stack. Developers need to pay attention to the

lifecycle of each Activity during these transitions.

Some Activity instances such as the application splash/startup screen are shown

and then permanently discarded when the Main menu screen Activity takes over.

The user cannot return to the splash screen Activity without re-launching the

application.

Other Activity transitions are temporary, such as a child Activity displaying a dialog

box, and then returning to the original Activity (which was paused on the activity

stack and now resumes). In this case, the parent Activity launches the child Activity

and expects a result.

Transitioning between Activities with Intents: As previously mentioned, Android

applications can have multiple entry points. There is no main() function, such as you

find in iPhone development. Instead, a specific Activity can be designated as the

main Activity to launch by default within the AndroidManifest.xml file; Other Activities

might be designated to launch under specific circumstances. For example, a music

application might designate a generic Activity to launch by default from the

Application menu, but also define specific alternative entry point Activities for

accessing specific music playlists by playlist ID or artists by name.

Launching a New Activity by Class Name: You can start activities in several ways.

The simplest method is to use the Application Context object to call the startActivity()

method, which takes a single parameter, an Intent.

Intent (android.content.Intent) is an asynchronous message mechanism used by the

Android operating system to match task requests with the appropriate Activity or

Service (launching it, if necessary) and to dispatch broadcast Intents events to the

system at large. For now, though, we focus on Intents and how they are used with

95

Activities. The following line of code calls the startActivity() method with an explicit

Intent. This Intent requests the launch of the target Activity named MyDrawActivity by

its class. This class is implemented elsewhere within the package.

startActivity(new Intent(getApplicationContext(),

MyDrawActivity.class));

This line of code might be sufficient for some applications, which simply transition

from one Activity to the next. However, you can use the Intent mechanism in a much

more robust manner. For example, you can use the Intent structure to pass data

between Activities.

Creating Intents with Action and Data: You‘ve seen the simplest case to use

Intent to launch a class by name. Intents need not specify the component or class

they want to launch explicitly. Instead, you can create an Intent Filter and register it

within the Android Manifest file. The Android operating system attempts to resolve

the Intent requirements and launch the appropriate Activity based on the filter

criteria.

The guts of the Intent object are composed of two main parts: the action to be

performed and the data to be acted upon. You can also specify action/data pairs

using Intent Action types and Uri objects. An Uri object represents a string that gives

the location and name of an object. Therefore, an Intent is basically saying ―do this‖

(the action) to ―that‖ (the Uri describing what resource to do the action to). The most

common action types are defined in the Intent class, including ACTION_MAIN

(describes the main entry point of an Activity) and ACTION_EDIT (used in

conjunction with a Uri to the data edited).You also find Action types that generate

integration points with Activities in other applications, such as the Browser or Phone

Dialer.

Launching an Activity Belonging to another Application: Initially, your

application might be starting only Activities defined within its own package

However, with the appropriate permissions, applications might also launch external

Activities within other applications. For example, a Customer Relationship

Management (CRM) application might launch the Contacts application to browse the

96

Contact database, choose a specific contact, and return that Contact‘s unique

identifier to the CRM application for use.

Here is an example of how to create a simple Intent with a predefined Action

(ACTION_DIAL) to launch the Phone Dialer with a specific phone number to dial in

the form of a simple Uri object:

Uri number = Uri.parse(tel:5555551212);

Intent dial = new Intent(Intent.ACTION_DIAL, number);

startActivity(dial);

Check your progress-2

a) There can be ____________ activities in application are visible to the user at a

time (A) One (B) Two (C) Three (D) Many

b) You can use the ___________to access settings and resources shared across

multiple Activity instances.

c) Which of the following you can do with Context

(A) Launch Activity instances

(B) Inspect and enforce application permissions

(C) Request a system service (for example, location service)

(D) All of the above

d) Android logging features are in the Log class of the __________ package.

e) The Intent object are composed of

(A) Action (B) Data (C) Both (A) and (B) (D) None of these

f) You can get the context by invoking

(A) getApplicationContext()

(B) getContext()

(C) getBaseContext()

(D) Any of these

g) The simplest method is to use the Application Context object to call the

_____________method, which takes a single parameter, an Intent

97

1.8 Let us sum up

In this unit you have learn all about android activity, important terminology. You have

understand the life cycle of an activity through practical example and you have also

lean about how to onfigure activity in AndroidManifest.xml file at the end of unit we

have discuss activity transition.

1.9 Check your Progress: Possible Answers

1-a) True 1-b) Activities 1-c) False

1-d) onCreate() 1-e) android:name

2-a) One 2-b) Application Context 2-c) (D) All of the above

2-d) android.util 2-e) Both (A) and (B) 2-f) (D) Any of these

2-g) startActivity()

1.10 Further Reading

 http://developer.android.com/guide/appendix/g-app-intents.html.

1.11 Assignment

 What is activity? Explain activity life cycle

 Explain activity transition

 Write short note on activity state and activity events

1.12 Activity

 Write android activity using logging feature to demonstrate activity life cycle

