
26

UNIT STRUCTURE

3.0 Learning Objectives

3.1 Introduction

3.2 Arithmetic Operator

3.3 Increment / Decrement Operator

3.4 Assignment Operator

3.5 Bitwise Operator

3.6 Relation Operator

3.7 Logical Operator

3.8 Ternary Operator

3.9 Operator Precedence

3.10 Let Us Sum Up

3.11 Suggested Answer for Check Your Progress

3.12 Glossary

3.13 Assignment

3.14 Activities

3.15 Case Study

3.16 Further Readings

3.0 Learning Objectives :

After learning this unit, you will be able to understand :

• Arithmetic Operator

• Assignment Operator

• Bitwise Operator

• Relation Operator

• Logical Operator

• Ternary Operator

• Operator Precedence

3.1 Introduction :

An Operator is a symbol that allows a us to perform arithmetic or logical
operations on data. It operate on operands and cause changes in the operand
value. Java provides a rich set of operators for manipulating programs. Commonly
operator performs a function on one, two or three operands.

Unary operator perform operation based on one operand. The ++ or
– – are the Unary operators. Binary operator perform operation based on two
operands. The +, <, = are Binary operators. An operator that required three

OPERATORS AND
PRECEDENCE

Unit

03

27

Operators and
Precedence

operands are called Ternary operator. The "expression1 ? expression2 :
expression3" is an example of Ternary operator.

In Java, Operators are divided in to six categories. :

• Arithmetic Operators

• Assignment Operators

• Bitwise Operators

• Relational Operators

• Logical Operators

• Ternary Operator

3.2 Arithmetic Operator :

The arithmetic operators are used to perform arithmetical operations. For
example, addition, subtraction, multiplication, division and modulo.

These arithmetic operators can be unary or binary type. If the operator
is specified with two operands then it is called binary operator and if the
operators are used with single operand then they are called unary operators.
The given table gives a brief description of binary operators :

Here the values of Variables A = 10 and B = 20

Table 3.1 : Binary Operators (Arithmetic Operator)

 Check Your Progress – 1 :
1. Write a note on Arithmetic operators.

...

...

Following program shows the use of Arithmetic Operator

class ArithmaticDemo

{

public static void main(String args[])

{

int a = 40;

int b = 20;

Operator

+

–

*

/

%

Description

Addition – Adds values of either
side of the operator

Subtraction – Subtracts right hand
operand from left hand operand

Multiplication – Multiplies values
on either side of the operator

Division – Divides left hand
operand by right hand operand

Modulus – Divides left hand
operand by right hand operand
and returns remainder

Example

A + B will give 30

A – B will give –10

A * B will give 200

B / A will give 2

B % A will give 0

28

Object Oriented
Concepts &

Programming–1
(Core Java)

//Addition (+) operator

System.out.println("Addition of a and b = " + (a + b));

//Subtraction (-) operator

System.out.println("Subtraction of a and b = " + (a - b));

//Multiplication (*) operator

System.out.println("Multiplication of a and b = " + (a * b));

//Division (/) operator

System.out.println("Division of a and b = " + (a / b));

//Modulo (%) operator

System.out.println("Modulo of a and b = " + (a % b));

}

}

OUTPUT :

Addition of a and b = 60

Subtraction of a and b = 20

Multiplication of a and b = 800

Division of a and b = 2

Modulo of a and b = 0

3.3 Increment / Decrement Operator :

The binary forms of ++ and – – are unary operator. It is also know
as increment / decrement operator. Each of these operator has unary versions
that perform the following operations :

Table 3.2 : Increment / Decrement Operators

Operator Description Example

+ + Increment by one value + +a, b+ +

– – Decrement by one value – –a, b– –

The unary operator also known as increment and decrement operators.
The Increment and decrement operators can be used in two ways, either before
or after an operand. Depending on the placement of these operators, it can
be called as prefix or postfix operation. In the prefix notations, the value of
the operands is incremented or decremented before assigning it to another
variable, while in the postfix notation, the value of the operands is incremented
or decremented after assigning it to another variable.

There are two types of increment and decrement operators :

1. Pre–increment/Decrement

2. Post–increment/Decrement

29

Operators and
Precedence

1. Pre–Increment/Decrement – The pre–increment/decrement operator
increases/decreases the value of a variable first and then evaluates the
expression.

For example,

If a = 2, then b = ++a will first increase the value of a that is make
it 3 and then assign it to variable a.

So, the final value of b becomes 3.

Similarly, if a = 2 then b = – –a will first decrease the value of variable
a by 1 and then assign it to variable b.

2. Post–Increment/Decrement – The post–increment/decrement operator
first assigns the value to the variable and then increases/decreases it.

For example, If a = 2; And b = a++;

Then, first the value of a is assigned to b and then it is incremented/
decremented by 1.

As in the above example, first value of a is assigned to b and then it
gets increased. So, the value of b becomes 2 and a becomes 3.

Similarly, if a = 2 and b = a– –, then value of b becomes 2 and a becomes
1.

Following program shows the use of Unary Operator ++ :

class UnaryDemo

{

public static void main(String args[])

{

int i, j, k;

i = 10;

j = i++;

//prefix increment

System.out.println("i = " + i);

System.out.println("j = " + j);

i = 10;

j = 0;

j = ++j;

//postfix increment

System.out.println("i = " + i);

System.out.println("j = " + j);

}

}

30

Object Oriented
Concepts &

Programming–1
(Core Java)

OUTPUT

i = 11

j = 11

i = 11

j = 11

 Check Your Progress – 2 :
1. Write a note on increment and decrement operators.

...

...

3.4 Assignment Operator :

Assignment operators are used to assign a value to operand (variable).
Assignment Operator is a Binary operator. General form of operators is as
follow :

varname = expr;

Where, varname is variable name and expr is an expression.

Table 3.3 : Assignment Operators

Example

C = A + B will assigne
value of A + B into C

C += A is equivalent to
C = C + A

C –= A is equivalent to
C = C – A

C *= A is equivalent to
C = C * A

C /= A is equivalent to
C = C / A

C %= A is equivalent to
C = C % A

C <<= 2 is same as
C = C << 2

Operator

=

+=

– =

*=

/=

%=

<<=

Description

Simple assignment operator, Assigns
values from right side operands to left
side operand

Add AND assignment operator, It adds
right operand to the left operand and
assign the result to left operand

Subtract AND assignment operator, It
subtracts right operand from the left
operand and assign the result to left
operand

Multiply AND assignment operator, It
multiplies right operand with the left
operand and assign the result left
operand

Divide AND assignment operator, It
divides left operand with the right
operand and assign the result to left
operand

Modulus AND assignment operator, It
takes modulus using two operands and
assign the result to left operand

Left shift AND assignment operator

31

Operators and
Precedence

3.5 Bitwise Operator :

The bitwise operator is used when the manipulation is to be done bit
by bit, i.e., in terms of 0's and 1's. These are faster in execution than arithmetic
operators. The given table displays the bitwise operators along with their
meanings :

Table 3.4 : Bitwise Operators and their meanings

Operators Meaning

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

~ One's complement

<< Left Shift

>> Right Shift

>>> Right Shift with zero fill

 Bitwise Not (~)

The bitwise operators perform operations on integer value. In the above
table, the ~ operator is unary operator and the rest of the operators are binary
operators.

The ~ (one's complement) operator inverts the bits which make up the
integer value, that is, 0 bits becomes 1 and 1 bits becomes 0.

For example, if ~3 is written, then it will give the value of ~4. The
same can be calculated as follows :

The Numerical value 3 can be represented as binary integer value–

00000000 00000000 00000000 00000011

Inverting each bits would give

11111111 11111111 11111111 11111100

It is same as bit pattern for –4 as an int value.

The given table shows the operations performed at bit level :

>>=

&=

^=

|=

Right shift AND assignment operator

Bitwise AND assignment operator

Bitwise exclusive OR and assignment
operator

Bitwise inclusive OR and assignment
operator

C >>= 2 is same as
C = C >> 2

C &= 2 is same as
C = C & 2

C ^= 2 is same as
C = C ^ 2

C |= 2 is same as
C = C | 2

32

Object Oriented
Concepts &

Programming–1
(Core Java)

Table 3.5 : Operations Performed at Bit Level

Now, based on the above table and explanations, let us take an example
to understand the use of these bitwise operators. Consider the expressions, 63
& 252, 63 | 252 and 63 ^ 252

 Bitwise AND (&)

First of all we will calculate 63 & 252. To do the same, first represent
the 63 and 252 values in their bit patterns.

00000000 00000000 00000000 00111111 = 63

00000000 00000000 00000000 11111100 = 252

As you know that and returns a 1 bit if and only if the corresponding
bit from each operand is 1, we calculate 63 and 252 to be 60 as follows :

00000000 00000000 00000000 00111111 = 63

00000000 00000000 00000000 11111100 = 252

00000000 00000000 00000000 00111100 = 60

 Bitwise OR (|)

Now we will calculate 63 | 252. To do the same, first represent the 63
and 252 values in their bit patterns.

00000000 00000000 00000000 00111111 = 63

00000000 00000000 00000000 11111100 = 252

Operator

&

|

^

~

<<

>>

>>>

Description

Binary AND Operator copies a
bit to the result if it exists in both
operands.

Binary OR Operator copies a bit
if it exists in either operand.

Binary XOR operator copies the
bit if it is set in one operand but
not both.

Binary Ones Complement
Operator is unary and has the
effect of ‘flipping’ bits.

Binary Left Shift Operator. The
left operands value is moved left
by the number of bits specified
by the right operand.

Binary Right Shift Operator. The
left operands value is moved right
by the number of bits specified
by the right operand.

Shift right zero fill operator. The
left operands value is moved right
by the number of bits specified
by the right operand and shifted
values are filled up with zeros.

Example

(A & B) will give 12 which
is 0000 1100

(A | B) will give 61 which is
0011 1101

(A ^ B) will give 49 which
is 0011 0001

(~A) will give –60 which is
1100 0011

A << 2 will give 240 which
is 1111 0000

A >> 2 will give 15 which is
1111

A >>> 2 will give 15 which
is 0000 1111

33

Operators and
Precedence

As you know that for Bitwise OR, Operator returns a 0 bit if, and only
if, the corresponding bit form of each operand is 0. Else it returns 1. We
calculate 63 OR 252 to be 255 as follows :

00000000 00000000 00000000 00111111 = 63

00000000 00000000 00000000 11111100 = 252

00000000 00000000 00000000 11111111 = 255

Bitwise XOR (|)

Now we will calculate 63 ^ 252. To do the same, first represent the
63 and 252 values in their bit patterns.

00000000 00000000 00000000 00111111 = 63

00000000 00000000 00000000 11111100 = 252

As you know that for Bitwise XOR, Operator returns a 0 bit if, and
only if, the corresponding bit form of each operand match. Else it returns 1.
We calculate 63 XOR 252 to be 195 as follows :

00000000 00000000 00000000 00111111 = 63

00000000 00000000 00000000 11111100 = 252

00000000 00000000 00000000 11000011 = 195

 Shift Operators

The shift operators work on the bit level. When the left operand is an
int, only the last 5 bit of the right operand is used to perform the shift. This
is due to the fact that an int is a 32 bit value and can only be shifted 0 through
31 times. Similarly, when the left operand is a long value, only the last 6 bits
of the right operand are used to perform the shift, as long values are 64 bit
values, they can only be shifted 0 through 63 times.

The << operator (left shift) causes the bits of the left operand to be
shifted to the left based on the value of the right operand. The shifted right
bits will be filled with 0 values.

The >> (right shift) operator causes the bits to the left operand to be
shifted to the right, based on the value of the right operand. The bits that
fill in the shifted left bits have the value of the leftmost bit (before the shift
operation). This operator is also called signed shift as it preserves the sign
(positive or negative) of the operand.

The >>> operator is similar to >> (Right shift) operator, except that the
bits that fill in the shifted left bits have the value of 0. It is also called an
unsigned shift as it does not preserve the sign of the operand.

 Check Your Progress – 3 :
1. Write a note on Bitwise operators.

...

...

3.6 Relation Operator :

The relational operators are used to compare two quantities. It either
returns true or false value only.

34

Object Oriented
Concepts &

Programming–1
(Core Java)

For example,

num1>num2

Here, the value of num1 is checked with num2, if num1 is greater than
num2 then a true value is returned else false. The syntax for declaring the
relational operators is given below :

expr1 <relational operator> expr2

In the above syntax, expr1 and expr2 are the arithmetic expressions which
can be variables, constants or both. When the arithmetic expressions are used
on either side of a relational operator, the arithmetic expression gets evaluated
first.

The given table shows the list of relational operators with their meaning :

Table 3.6 : Relational Operators

3.7 Logical Operator :

Logical operators are used to combine more than one condition to perform
logical operation. There are 3 logical operators, the given table shows the list
of these operators

Operator

= =

|=

>

<

>=

<=

Description

Checks if the value of two
operands are equal or not, if yes
then condition becomes true.

Check if the value of the operands
are equal or not, if values are not
equal then condition becomes
true.

Checks if the value of left operand
is greater than the value of right
operand, if yes then condition
becomes true.

Checks if the value of left oeprand
is less than the value of right
operand, if yes then condition
becomes true.

Checks if the value of left operand
is greater than or equal to the
value of right operand, if yes then
condition becomes true.

Checks if the value of left operand
is less than or equal to the value
of right operand, if yes then
condition becomes true.

Example

(A = = B) is not true.

(A |= B) is true.

(A > B) is not ture.

(A < B) is true.

(A >= B) is not true.

(A <= B) is true.

35

Operators and
Precedence

Table 3.7 : Logical Operators

The && and | | are used to form compound conditions. For example,
num1>num2 && num1 >num3

In the above expression, first the value of num1 and num2 will be
compared (to the left side of && operator) then the values of num1 and num3
gets compared (to the right of &&) and finally AND operation is performed
on both the results.

Now let us see the functions of these logical operators, that is, AND,
OR and NOT.

1. AND operator (&&) – The AND operator returns true value when both
the operands are true. The truth table for AND operator is given below :

Table 3.8 : Logical AND Operators

operand1 operand2 operand1
&&

operand2

True True True

True False False

False True False

False False False

2. OR Operator (||) – The OR operator (||) produces true output when one
of the input is true or when both the inputs are true. The truth table
of OR (||) operator is given below :

Table 3.9 : Logical OR Operators

operand1 operand2 operand1
| |

operand2

True True True

True False True

False True True

False False False

Operator

&&

| |

!

Description

Called Logical AND operator. If both the
operands are non zero then then condition
becomes true.

Called Logical OR operator. If any of the
two operands are non zero then then
condition becomes true.

Called Logical NOT operator. Use to
reverses the logical state of its operand.
If a condition is true then Logical NOT
operator will make false.

Example

(A && B) is false.

(A || B) is true.

!(A && B) is true.

36

Object Oriented
Concepts &

Programming–1
(Core Java)

3. NOT Operator (!) – The NOT (!) operator is used to negate the
condition, that is, if the true value is specified as an input then it produces
false output and if false value is given as an input then true output is
produced.

The truth table for NOT (!) operator is given below :

Table 3.10 : Logical XOR Operators

operand1 !operand

True False

False True

4. Assignment Operators – The assignment operator is used to assign a
value to a variable. The syntax of assignment operator is given below :

varname= expr;

Where, varname is variable name and expr is an expression.

 Check Your Progress – 4 :
1. Write a note on Bitwise operators.

...

...

2. Unary operator perform operation based on operand.

(A) One (B) two (C) three (D) four

3. The operators are used to perform arithmetical operations. .

(A) Bitwise (B) Arithmetic (C) Relational (D) Logical

4. also known as increment / decrement operator..

(A) ++ & – – (B) + & – (C) += & –= (D) =+ & =–

5. The operator is used when the manipulation is to be done
bit by bit.

(A) Bitwise (B) Arithmetic (C) Relational (D) Logical

6. The operator is also known as ternary operator..

(A) Bitwise (B) conditional (C) Relational (D) Logical

7. The have states and behaviours.

(A) Class (B) Objects (C) Variable (D) Method

8. Assignment operators are used to assign a value to operand.

(A) True (B) False

9. Bitwise Not operator is denote by ~ sign.

(A) True (B) False

10. The << operator (left shift) causes the bits of the left operand to be
shifted to the left based on the value of the right operand.

(A) True (B) False

11. Logical operators are used to combine more than one condition to perform
logical operation.

(A) True (B) False

37

Operators and
Precedence

3.8 Ternary Operator :

The conditional operator is also known as ternary operator. It is denoted
by ? and :. The syntax of same can be given as :

expr1 ? expr2 :expr3

In the above syntax, expr1, expr2 and expr3 are expressions and expr1
must be of boolean type.

For example,

If a = 10

b = 2

z = (a > b) ? a : b

In the above example, the value of a > b gets evaluated first, if the
condition is true then value of a gets assigned to z otherwise the value of b.

class TarnaryDemo

{

public static void main(String args[])

{

int a = 12;

int b = 8;

int c;

c = (a > b) ? a : b;

System.out.println(c);

}

}

OUTPUT

12

3.9 Operator Precedence :

The precedence of operators is useful when there are several operators
in an expression. Java has specific rules for determining the order of evaluation
of an expression. The given table displays the list of operators in the order
of precedence. The hierarchy of Java operators with highest precedence is
shown first.

a. All those expressions which are inside parenthesis are first evaluated,
the nested parenthesis are evaluated from the innermost parenthesis to
the outer.

b. All the operators which are in the same row have equal precedence.

c. The given table shows the list of operators with their order of evaluation–

38

Object Oriented
Concepts &

Programming–1
(Core Java)

Table 3.11 : Operators and their Evaluation

Operator Type Order of Evaluation

() Parenthesis
[] Array Subscript Left to right
. Member Access

++, – – Prefix increment, decrement Right to left

++, – – Postfix Increment, decrement Right to left
– Unary minus

*,/,% Multiplicative Left to right

+, – Additive Left to right

<, >, <=, >= Relational Left to right

==,!= Equality Left to right

&& AND Left to right

| | OR Left to right

? : Conditional Right to left

=, +=, –+, Assignment Right to left
*=,/+,%=

 Java Programs :

When we consider a Java program it can be defined as a collection of
objects that communicate via invoking each other's methods. Let us now briefly
look into what do class, object, methods and instant variables mean.
• Object – Objects have states and behaviors. For example : A dog has

states–color, name, and breed as well as behaviors –wagging, barking
and eating. An object is an instance of a class.

• Class – A class can be defined as a template/ blue print that describe
the behaviors/states that object of its type support.

• Methods – A method is basically a behavior. A class can contain many
methods. It is in methods where the logics are written, data is manipulated
and all the actions are executed.

• Instant Variables – Each object has its unique set of instant variables.
An object's state is created by the values assigned to these instant
variables.

• Writing and Compiling Programs – Let us look at a simple code that
would print the word Welcome.
public class Welcome

{
/*This program will print Welcome */
public static void main (String args [])
{

System.out.println ("Welcome"); //Print Welcome
}

}

39

Operators and
Precedence

Let us look at how to save the file, compile and run the program. Please
follow the steps given below :

1. Open notepad and add the code as above.

2. Save the file as : Welcome.java.

3. Open a command prompt window and go to the directory where you
saved the class. Assume its C:\.

4. Type ' javac Welcome.java ' and press enter to compile your code. If
there are no syntax errors in your code the command prompt will take
you to the next line (Assumption : The path variable is set).

5. Now type ' java Welcome ' to run your program.

6. You will be able to see Welcome' printed on the window. C:> javac
Welcome.java

C:>java Welcome Welcome

• Basic Syntax – About Java programs, it is very important to keep in
mind the following points.

• Case Sensitivity – Java is case sensitive which means identifier Hi and
hi would have different meaning in Java.

• Class Names – For all class names the first letter should be in Upper
Case.

If several words are used to form a name of the class, each inner word's
first letter should be in upper case.

Example : class Welcome

• Method Names – All method names should start with a Lower Case
letter. If several words are used to form the name of the method, then
each inner word's first letter should be in Upper Case.

Example : public void myMethodName()

• Program File Name – Name of the program file should exactly match
the class name.

When saving the file you should save it using the class name (Remember
java is case sensitive) and append '.java' to the end of the name. (If the file
name and the class name do not match your program will not compile).

Example : Assume 'Welcome' is the class name. Then the file should
be saved as 'Welcome.java'

• Public static void main(String args[]) – Processing of java program
starts from the main() method which is a mandatory part of every java
program.

Java provides a number of access modifiers to set access levels for
classes, variables, methods and constructors. The four access levels are :

1. Visible to the package, its default modifier.

2. Visible to the class only (private)

3. Visible to the world (public)

4. Visible to the package and all subclasses (protected).

40

Object Oriented
Concepts &

Programming–1
(Core Java)

Default Access Modifier – No keyword – Default access modifier means
we do not explicitly declare an access modifier for a class, field, method etc.

A variable or method declared without any access control modifier is
available to any class in the same package. The default modifier cannot be
used for methods, fields in an interface.

Example :

Variables and methods can be declared without any modifiers, as in the
following example :

String x= "123";

boolean processorder ()

{

return true;

}

Private Access Modifier – private – Methods, Variables and Constructors
that are declared private can only be accessed within the declared class itself.

Private access modifier is the most restrictive access level. Class and
interfaces cannot be private.

Variables that are declared private can be accessed outside the class if
public getter methods are present in the class.

Using the private access modifier is the main way that an object
encapsulates itself and hides data from the outside world.

So to make the variable available to the outside world, we defined two
public methods : get Format(), which returns the value of format and set
Format(String), which sets its value.

Public Access Modifier – public – A class, method, constructor, interface
etc declared public can be accessed from any other class. Therefore fields,
methods, blocks declared inside a public class can be accessed from any class
belonging to the Java Universe.

However, if the public class we are trying to access is in a different
package then the public class still need to be imported.

Because of class inheritance, all public methods and variables of a class
are inherited by its subclasses.

Example :

The following function uses public access control :

Public static void main (String args [])

{

//………..

}

The main () method of an application has to be public. Otherwise, it
could not be called by a Java interpreter (such as java) to run the class.

Protected Access Modifier – protected – Variables, methods and
constructors which are declared protected in a superclass can be accessed only
by the subclasses in other package or any class within the package of the
protected members' class.

41

Operators and
Precedence

The protected access modifier cannot be applied to class and interfaces.
Methods, fields can be declared protected; however, methods and fields in an
interface cannot be declared protected.

Protected access gives the subclass a chance to use the helper method
or variable, while preventing a nonrelated class from trying to use it.

3.10 Let Us Sum Up :

An operator is used to perform specific operation on two or more
operands. The operators are classified as given are Arithmetic Operators,
Relational Operators, Logical Operators, Assignment Operators, Increment and
Decrement Operators, Conditional Operators, Bitwise Operators, Special Operators

The precedence of operators is useful when there are several operators
in an expression. Java has specific rules for determining the order of evaluation
of an expression. The given table displays the list of operators in the order
of precedence. The hierarchy of Java operators with highest precedence is
shown first as all those expressions which are inside parenthesis are first
evaluated, the nested parenthesis are evaluated from the innermost parenthesis
to the outer. Secondly all the operators which are in the same row have equal
precedence.

Let us talk about our understanding related to Java program it can be
defined as a collection of objects that communicate via invoking each other's
methods. Let us now briefly look into what do class, object, methods and instant
variables mean.

• Object – Objects have states and behaviors. For example : A dog has
states–color, name, breed as well as behaviors –wagging, barking and
eating. An object is an instance of a class.

• Class – A class can be defined as a template/ blue print that describe
the behaviors/states that object of its type support.

• Methods – A method is basically a behavior. A class can contain many
methods. It is in methods where the logics are written, data is manipulated
and all the actions are executed.

• Instant Variables – Each object has its unique set of instant variables.
An object's state is created by the values assigned to these instant
variables

3.11 Suggested Answer for Check Your Progress :

 Check Your Progress 1 :

See Section 3.2

 Check Your Progress 2 :

See Section 3.3

 Check Your Progress 3 :

See Section 3.5

 Check Your Progress 4 :

1 : See Section 3.7 2 : A 3 : B 4 : A

5 : A 6 : B 7 : B 8 : A 9 : A

10 : A 11 : A

42

Object Oriented
Concepts &

Programming–1
(Core Java)

3.12 Glossary :

1. Operators – java provides six kind of operators. Arithmetic's operatos
uses for the mathematic operation. It required two operands to perform
operation. Increment and Decrement are the unary operators. It will either
increase or decrease operand value by one. Assignment operator is
responsible to assign value of right hand operand to left hand side
operand. Bitwise operators work on bit. It basically use for binary
operation. Relation operator is uses for the compression between two
operands. Logical operator's uses to take decision based on operands
values. Ternary operators required three operands and uses for the decision
making.

2. Object – Objects have states and behaviors. For example : A dog has
states–color, name, breed as well as behaviors –wagging, barking and
eating. An object is an instance of a class.

3. Class – A class can be defined as a template/ blue print that describe
the behaviors/states that object of its type support.

4. Methods – A method is basically a behavior. A class can contain many
methods. It is in methods where the logics are written, data is manipulated
and all the actions are executed.

3.13 Assignment :

Write a program to explain the use of operators.

3.14 Activities :

1. Explain the concept of Pre-Increment/Decrement and Post Increment/
Decrement.

2. Explain class, object, methods and instant variables

3.15 Case Study :

For our case study, we will be creating two classes. They are Student
and Student Details.

First open notepad and add the following code. Remember this is the
Student class and the class is a public class. Now, save this source file with
the name Student.java.

The Student class has four instance variables name, age, course and
semester.

The class has one parameterised constructor, which takes parameters.

The class should also comprise with one public method display(), which
displays the details of the student.

Processing starts from the main method. Therefore in–order for us to
run this Student class there should be main method and objects should be
created. We will be creating a separate class for these tasks.

Student Details class, which creates two instances of the class Student
and invokes the methods for each object to assign values for each variable.

43

Operators and
Precedence

3.16 Further Readings :

1. Core Java 2, 2 volumes, Cay S. Horstmann, Gary Cornell, The Sun
Microsystems Press, 1999, Indian reprint 2000

2. Java 2, The Complete Reference, Patrick Naughton and Herbert Schildt,
Tata McGraw Hill, 1999

3. Programming with Java, Ed. 2, E. Balagurusamy, Tata McGraw Hill,
1998, reprint, 2000

4. The Java Tutorial, Ed. 2, 2 volumes, Mary Campione and Kathy Walrath,
Addison Wesley Longmans, 1998

5. The Java Language Specification, Ed. 2, James Gosling, Bill Joy, Guy
Steele & Gilad Bracha, (Ed. 1 1996, Ed. 2 2000), Sun Microsystems,
2000

6. Using Java 2, Joseph L. Weber, Prentice Hall, Eastern Economy Edition,
2000

	3

