

3

UNIT 1: INHERITANCE

Unit Structure

1.0 Learning Objectives

1.1 Introduction

1.2 Concept of Inheritance

1.3 Polymorphism

1.4 Final Keyword

1.5 Let Us Sum Up

1.6 Suggested Answer for Check Your Progress

1.7 Glossary

1.8 Assignment

1.9 Activities

1.10 Case Study

1.11 Further Readings

1.0 Learning Objectives

After learning this unit, you will be able to:

 Explain the concept of inheritance

 Define Polymorphism

 Compile time and Runtime

 Illustrate super keyword and final keyword

1.1 Introduction

Inheritance can be defined as the process where one object acquires the

properties of another. With the use of inheritance the information is made

manageable in a hierarchical order.

Inheritance

4

Inheritance,

Exception

Handling and

Multithreading

Java Inheritance defines a relationship between a superclass and its

subclasses. This means that an object of a subclass can be used wherever an object

of the superclass can be used. Class Inheritance in java mechanism is used to build

new classes from existing classes. The inheritance relationship is transitive: if

class x extends class y, then a class z, which extends class x, will also inherit from

class y.

1.2 Concept of Inheritance

Concept of Inheritance

“Inheritance is one of the cornerstones of OOP because it allows for the

creation of hierarchical classifications. Using inheritance, you can create a general

class that defines traits common to a set of related objects, that is, objects with

common attributes and behaviors. This class may then be inherited by other, more

specific classes”, each adding only those attributes and behaviors that are unique

to the inheriting class.

Need of Inheritance

The various needs of inheritance are given below:

1. Closer to Real-World

2. Code Reusability

3. Transitive Nature

As stated earlier, inheritance leads to the definition of generalized classes

that are at the top of an inheritance hierarchy, thus it is an implementation of

5

generalization. This feature available in C++ makes the data and methods of a

Superclass or base class available to its subclass or derived class. It has many

advantages, the most important of that is the reusability of code. Once a class has

been created, it can be used to create new subclasses.

Generalisation/ Specialisation

A class that is inherited is referred to as a base class. The class that does the

inheriting is referred to as the derived class. Each instance of a derived class

includes all the members of the base class. The derived class inherits all the

properties of the base class. Therefore, the derived class has a large set of

properties than its base class. However, a derived class may override some of the

properties of the base class.

To inherit a class, the definition of one class can be incorporated into

another by using the extends keyword. This class can then be inherited by other,

more specific classes, each adding those things that are unique to it. The syntax of

inheriting class is given below:

Syntax:

<accessspecifier> class <class name(Subclass)> extends <class

name(Superclass)>

For example,

Public class B extends A

Public class C extends B

Public Class D extends C

The public data members and methods (Except constructors) in the

superclass are inherited by the subclass, i.e., their definitions are copied into the

subclass’s class definition. No members of the subclass are visible to the

superclass.

Inheritance

6

Inheritance,

Exception

Handling and

Multithreading

Now let us consider an example to illustrate the same:

//Create a superclass

classSuperClass

{

intx,y;

voidshowXY()

{

System.out.println (“x and y” + x + “ ” + y);

}

}

//Create a subclass by extending class A

classSubClass extends SuperClass

{

int z;

voidshowZ()

{

System.out.println (“z is:” + z);

}

voidsum()

{

System.out.println (“x+y+z” + (x + y+ z));

}

7

}

classDemoInheritance

{

public static void main (String args[])

{

SuperClasssuperob = new SuperClass ();

SubClasssubob= new SubClass ();

//The superclass can refer itself

superob.x=10;

superob.y=7;

System.out.println (“Contents of Superclass”)

superob.showXY();

//The subclass has access to all public members of its superclass

subob.x=14;

subob.y=16;

subob.z=20;

System.out.println (“Contents of subclass”)

subob.showXY()

subob.showZ();

System.out.println ();

System.out.println (“Sum of x, y and z in subclass”);

subob.sum();

Inheritance

8

Inheritance,

Exception

Handling and

Multithreading

}

}

The output of above program is given below:

Contents of superclass

X and y10 7

Contents of subclass

x and y 14 16

z is: 20

Sum of x, y and z in subclass

50

As it is given in the above program, the subclass SubClass includes all of

the members of its superclass SuperClass. That is why subob can access x and y

and call showXY(). Also, inside add (), x and y can be referred to directly, as if

they were part of SubClass. Although a subclass includes all of the members of its

superclass, it cannot access members of the superclass that have been declared as

private.

9

Check your progress 1

1. Write the syntax of inheriting a class.

2. Explain Implicit Subclass to Super class Conversion with the help of an

example.

...

...

...

...

...

...

...

...

...

...

1.3 Polymorphism

“Polymorphism allows one interface to be used for a set of actions i.e. one

name may refer to different functionality. Polymorphism allows an object to

Inheritance

10

Inheritance,

Exception

Handling and

Multithreading

accept different requests of a client (it then properly interprets the request like

choosing appropriate method) and responds according to the current state of the

runtime system, all without bothering the user.”

There are two types of polymorphism:

1. Compile-time polymorphism

2. Runtime Polymorphism

Compile time Polymorphism

 In compile time Polymorphism, method to be invoked is determined at the

compile time. Compile time polymorphism is supported through the method

overloading concept in java.

 Method overloading means having multiple methods with same name but

with different signature (number, type and order of parameters).

Here is the code of the example:

class One

{

public void funOne (int a)

{

System.out.println (“The value of class A is:” + a);

}

public void funOne (int a, int b)

{

System.out.println (“The value of class B is:” + a + “and” + b);

}

}

public class PolyOne

{

public static void main (String [] args)

{

One obj=new One ();

11

//Here compiler decides that funOne (int) is to be called and “int” will be printed.

obj.funOne (20);

//Here compiler decides that funOne (int, int) is to be called and “int and int” will

be printed.

obj.funOne (20, 30);

}

}

The output of above program is given below:

The value of class A is: 20

The value of class B is: 20 and 30

Runtime Polymorphism:

 In runtime polymorphism, the method to be invoked is determined at the

run time. The example of run time polymorphism is method overriding which is

also called dynamic method dispatch is explained below:

Method Overriding:

 If a class inherits a method from its super class, then there is a chance to

override the method provided that it is not marked final.

 Overriding means redefining a method in an inheritance hierarchy. In a

class hierarchy, when a method in a subclass has the same name and type

signature as a method in its superclass then the method in the subclass is said to

override the method in the superclass.

 The benefit of overriding is: ability to define a behavior that's specific to

the sub class type which means a subclass can implement a parent class method

based on its requirement.

 In object oriented terms, overriding means to override the functionality of

any existing method.

Example:

Let us look at an example.

class Animal

{

Inheritance

12

Inheritance,

Exception

Handling and

Multithreading

public void eat ()

{

System.out.println (“Animals can eat”);

}

}

Class Dog extends Animal

{

public void eat ()

{

System.out.println (“Dog can eat and drink”);

}

}

public class TestCat

{

public static void main (String args [])

{

Animal a = new Animal (); //Animal reference and object

Animal b= new Dog (); //Animal reference but Rat object

a.eat (); //runs the method in Animal class

b.eat (); //runs the method in Dog class

}

}

This will produce the given output:

Animals can eat

Dog can eat and drink

 In the example given above, you can see that even though Dog is a type of

Animal it runs the eat method in the Dog class. The reason for this is: In compile

time the check is made on the reference type. However, in the runtime, JVM

13

figures out the object type and would run the method that belongs to that

particular object.

 Therefore, in the above example, the program will compile properly since

Animal class has the method eat. Then at the runtime it runs the method specific

for that object.

Rules for method overriding:

 “The return type should be the same or a subtype of the return type

declared in the original overridden method in the super class.

 A method declared final cannot be overridden.

 The access level cannot be more restrictive than the overridden method's

access level. For example: if the super class method is declared public then

the overriding method in the sub class cannot be either private or public.

However the access level can be less restrictive than the overridden

method's access level.

 The argument list should be exactly the same as that of the overridden

method.

 Instance methods can be overridden only if they are inherited by the

subclass.

 A method declared static cannot be overridden but can be re-declared.

 If a method cannot be inherited then it cannot be overridden.

 A subclass in a different package can only override the non-final methods

declared public or protected.

 An overriding method can throw any uncheck exceptions, regardless of

whether the overridden method throws exceptions or not. However, the

overridden method should not throw checked exceptions that are new or

broader than the ones declared by the overridden method. The overriding

method can throw narrower or fewer exceptions than the overridden

method.

 A subclass within the same package as the instance's superclass can

override any superclass method that is not declared private or final.

 Constructors cannot be overridden.”

Inheritance

14

Inheritance,

Exception

Handling and

Multithreading

 Using the super keyword

When invoking a superclass version of an overridden method the super keyword

is used.

class Animal

{

public void move ()

{System.out.println (“Animals can move”);}

}//Animal

Class cow extends Animal

{

public void move ()

{

super.move (); //invokes the super class method

System.out.println (“Cow can walk and run”):

}

public class TestCow

{

public static void main (String args [])

{

Animal b = new Cow (); //Animal reference but Cow object

b.move (); //runs the method in Cow class

}

}

This would produce following result:

Animals can move

Cow can walk and run

15

Check your progress 2

1. Write the rules for method overriding.

2. What do you mean by the term polymorphism

...

...

...

...

...

...

...

...

...

...

...

1.4 Final Keyword

The final keyword has mainly three uses:

1. Creating constants

Inheritance

16

Inheritance,

Exception

Handling and

Multithreading

2. Preventing method overriding

3. Preventing inheritance

Let us discuss these uses in order to understand the concept of final keyword in

detail:

1. Creating Constants

Declaring a variable as final makes it constant, doing so prevents the

contents from being modified. This means that you must initialize a final variable

when it is declared.

For example:

finalint FILE_NEW=1

finalint FILE_OPEN=2

Subsequent parts of your program can now use FILE_OPEN, FILE_NEW

etc. as if they were constants. It is a common naming convention to choose all

uppercase identifiers for final variables. Thus, a final variable is essentially a

constant.

2. Preventing method overriding

The keyword final can also be applied to methods but its meaning is

substantially different than when it is applied to variables. Methods declared as

final cannot be overridden, that is, a method in the superclass cannot be

overridden in the subclass.

3. Preventing inheritance

In some cases, you may want to prevent a class form being inherited. To do

this, precede the class declaration with final. Declaring a class as final implicitly

declares all of its methods a final, too. It is illegal to declare a class both abstract

and final since an abstract class is incomplete by itself and relies upon its subclass

to provide complete implementations.

17

Check your progress 3

1. List the uses of final keyword.

2. Write the syntax of final keyword

...

...

...

...

...

...

...

...

...

...

...

...

...

...

1.5 Let Us Sum Up

This Unit No.1 of this Block we have understood “Inheritance is one of the

cornerstones of OOP because it allows for the creation of hierarchical

classifications. Using inheritance, you can create a general class that defines traits

common to a set of related objects”, that is, objects with common attributes and

behaviors. The various needs of inheritance are 1.Closer to Real-World, 2. Code

Reusability ad 3. Transitive Nature.

Inheritance

18

Inheritance,

Exception

Handling and

Multithreading

The study of Generalisation/Specialisation has made us understand Syntax,

Create a superclass then Create a subclass by extending class A and also the

subclass has access to all public members of its superclass. Then further studied

that “Polymorphism allows one interface to be used for a set of actions i.e. one

name may refer to different functionality. Polymorphism allows an object to

accept different requests of a client (it then properly interprets the request like

choosing appropriate method) and responds according to the current state of the

runtime system”, all without bothering the user. There are two types of

polymorphism, 1. Compile-time polymorphism, 2. Runtime Polymorphism.

We understood Method Overriding, if a class inherits a method from its super

class, then there is a chance to override the method provided that it is not marked

final. Overriding means redefining a method in an inheritance hierarchy. In a class

hierarchy, when a method in a subclass has the same name and type signature as a

method in its superclass then the method in the subclass is said to override the

method in the superclass. We have also understood in detail all Rules for method

overriding. There is also good understanding about the final keyword has mainly

three uses 1. Creating constants, 2.Preventing method overriding, and 3.

Preventing inheritance

1.6 Suggested Answer for Check Your Progress

Check your progress 1

Answers: See Section 1.2

Check your progress 2

Answers: See Section 1.3

Check your progress 3

Answers: See Section 1.4

19

1.7 Glossary

3. Inheritance - Inheritance is one of the cornerstones of OOP because it allows

for the creation of hierarchical classifications.

4. Overriding - Overriding means redefining a method in an inheritance

hierarchy. In a class hierarchy, when a method in a subclass has the same

name and type signature as a method in its superclass then the method in the

subclass is said to override the method in the superclass.

1.8 Assignment

Explain how a subclass has access to all public members of its superclass.

Write a program to create a superclass.

1.9 Activities

Write a program to explain inheritance

1.10 Case Study

Create a class Medicine to represent a drug manufactured by a

pharmaceutical company. Provide a function display Label() in this class to print

Name and address of the company.

Derive Tablet, Syrup and Ointment classes from the Medicine class.

Override the display Label() function in each of these classes to print additional

information suitable to the type of medicine. For example, in case of tablets, it

could be “store in a cool dry place”, in case of ointments it could be “for external

use only” etc.

Create a class Test Medicine. Write main function to do the following:

1 Declare an array of Medicine references of size 10

2 Create a medicine object of the type as decided by a randomly generated

integer in the range 1 to 3.

3 Refer Java API Documentation to find out random generation feature.

4 Check the polymorphic behavior of the display Label() method.

Inheritance

20

Inheritance,

Exception

Handling and

Multithreading

1.11 Further Reading

1. Core Java 2, 2 volumes, Cay S. Horstmann, Gary Cornell, The Sun

Microsystems Press, 1999, Indian reprint 2000

2. Java 2, The Complete Reference, Patrick Naughton and Herbert Schildt,

Tata McGraw Hill, 1999

3. Programming with Java, Ed. 2,E. Balagurusamy, Tata McGraw Hill, 1998,

reprint,2000

4. The Java Tutorial, Ed. 2, 2 volumes,MaryCampione and Kathy Walrath,

Addison Wesley Longmans, 1998

5. The Java Language Specification, Ed. 2, James Gosling, Bill Joy, Guy

Steele &GiladBracha, (Ed. 1 1996, Ed. 2 2000), Sun Microsystems, 2000

6. Using Java 2, Joseph L. Weber, Prentice Hall, Eastern Economy Edition,

2000

