
109

Unit-3: Intent

Unit Structure

4.0 Learning Objectives

4.1 Introduction

4.2 Intent Structure

4.3 Other Operations on Intent

4.4 Types of Intent

4.5 Intent Resolution

4.6 Example of Intent

4.7 Explanation of Example

4.8 Standard Activity Actions

4.9 Standard Broadcast Actions

4.10 Let us sum up

4.11 Check your Progress: Possible Answers

4.12 Further Reading

4.13 Assignment

4.14 Activity

3

110

3.0 Learning Objective

After studying this unit, the student should be able to

 Understand the structure of an Intent

 Perform operations on Intent

 List the types of Intent

 Know what is Intent Resolution?

 Give example of Intent

 List standard Activity Actions

 List standard Broadcast Actions

3.1 Introduction

Intent is an abstract description of an operation to be performed. It can be used to

launch an Activity, broadcastIntent to send it to any interested BroadcastReceiver

components, and to communicate with a background Service.

Intent provides a facility for performing late runtime binding between the codes in

different applications. Its most significant use is in the launching of activities, where it

can be thought of as the glue between activities. It is basically a passive data

structure holding an abstract description of an action to be performed.

3.2 Intent Structure

The intent has primary attributes which are mandatory and secondary attributes

which are optional.

Primary Attributes

Primary Attributes: The primary pieces of information in intent are:

1. Action: The general action to be performed, such

as ACTION_VIEW, ACTION_EDIT, ACTION_MAIN, etc.

2. Data: The data to operate on, such as a person record in the contacts database,

expressed as an Uri.

https://developer.android.com/reference/android/content/Intent.html#ACTION_MAIN

111

Some examples of action/data pairs are:

 ACTION_VIEW content://contacts/people/9 : Display information about the person

whose identifier is "9".

 ACTION_DIAL content://contacts/people/9 : Display the phone dialer with the person

filled in.

 ACTION_VIEW tel:123 : Display the phone dialer with the given number filled in. Note

how the VIEW action does what is considered the most reasonable thing for a

particular URI.

 ACTION_DIAL tel:123 : Display the phone dialer with the given number filled in.

 ACTION_EDIT content://contacts/people/9 : Edit information about the person whose

identifier is "9".

 ACTION_VIEW content://contacts/people/ : Display a list of people, which the user

can browse through. This example is a typical top-level entry into the Contacts

application, showing you the list of people. Selecting a particular person to view

would result in a new intent {ACTION_VIEWcontent://contacts/people/N } being used

to start an activity to display that person.

Secondary Attributes

In addition to these primary attributes, there are a number of secondary attributes

that you can also include with intent:

 Category: Gives additional information about the action to execute. For

example, CATEGORY_LAUNCHERmeans it should appear in the Launcher as a

top-level application, while CATEGORY_ALTERNATIVE means it should be

included in a list of alternative actions the user can perform on a piece of data.

 Type: Specifies an explicit type (a MIME type) of the intent data. Normally the type is

inferred from the data itself. By setting this attribute, you disable that evaluation and

force an explicit type.

 Component: Specifies an explicit name of a component class to use for the intent.

Normally this is determined by looking at the other information in the intent (the

action, data/type, and categories) and matching that with a component that can

handle it. If this attribute is set then none of the evaluation is performed, and this

112

component is used exactly as is. By specifying this attribute, all of the other Intent

attributes become optional.

 Extras: This is a Bundle of any additional information. This can be used to provide

extended information to the component. For example, if we have a action to send an

e-mail message, we could also include extra pieces of data here to supply a subject,

body, etc.

3.3 Other Operations on Intent

Here are some examples of other operations you can specify as intents using these

additional parameters:

 ACTION_MAIN with category CATEGORY_HOME: Launch the home screen.

 ACTION_GET_CONTENT with MIME type vnd.android.cursor.item/phone:

Display the list of people's phone numbers, allowing the user to browse through

them and pick one and return it to the parent activity.

 ACTION_GET_CONTENT with MIME type */* and category

CATEGORY_OPENABLE: Display all pickers for data that can be opened and

allowing the user to pick one of them and then some data inside of it and

returning the resulting URI to the caller. This can be used, for example, in an e-

mail application to allow the user to pick some data to include as an attachment.

There are a variety of standard Intent action and category constants defined in the

Intent class, but applications can also define their own, for example, the standard

ACTION_VIEW is called "android.intent.action.VIEW".

3.4 Types of Intent

There are two primary forms of intents you will use.

 Explicit Intents have specified a component which provides the exact class to be

run. Often these will not include any other information, simply being a way for an

application to launch various internal activities it has as the user interacts with the

application.

113

 Implicit Intents have not specified a component; instead, they must include enough

information for the system to determine which of the available components is best to

run for that intent.

3.5 Intent Resolution

When using implicit intents, given such an arbitrary intent we need to know what to

do with it. This is handled by the process of Intent resolution, which maps an Intent

to an Activity, BroadcastReceiver, or Service that can handle it.

The intent resolution mechanism basically revolves around matching Intent against

all of the <intent-filter> descriptions in the installed application packages.

There are three pieces of information in the Intent that are used for resolution: the

action, type, and category. Using this information, a query is done on the

PackageManager for a component that can handle the intent. The appropriate

component is determined based on the intent information supplied in the

AndroidManifest.xml file as follows:

 The action, if given, must be listed by the component as one it handles.

 The type is retrieved from the Intent's data, if not already supplied in the Intent.

Like the action, if a type is included in the intent (either explicitly or implicitly in its

data), then this must be listed by the component as one it handles.

 For data that is not a content: URI and where no explicit type is included in the

Intent, instead the scheme of the intent data (such as http: or mailto:) is

considered. Again like the action, if we are matching a scheme it must be listed

by the component as one it can handle.

 The categories, if supplied, must all be listed by the activity as categories it

handles. That is, if you include the categories CATEGORY_LAUNCHER and

CATEGORY_ALTERNATIVE, then you will only resolve to components with an

intent that lists both of those categories. Activities will very often need to support

the CATEGORY_DEFAULT so that they can be found by startActivity.

114

3.6 Example of Intent

For example, consider the Note Pad sample application that allows a user to browse

through a list of notes data and view details about individual items.

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="in.edu.baou.notepad">

 <application android:icon="@drawable/app_notes" android:label="@string/app_name">

<provider class=".NotePadProvider" android:authorities="in.edu.baou.provider.NotePad" />

<activity class=".NotesList" android:label="@string/title_notes_list">

 <intent-filter>

<action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 <intent-filter>

 <action android:name="android.intent.action.VIEW" />

 <action android:name="android.intent.action.EDIT" />

 <action android:name="android.intent.action.PICK" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:mimeType="vnd.android.cursor.dir/vnd.google.note" />

 </intent-filter>

 <intent-filter>

 <action android:name="android.intent.action.GET_CONTENT" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:mimeType="vnd.android.cursor.item/vnd.google.note" />

 </intent-filter>

 </activity>

 <activity class=".NoteEditor" android:label="@string/title_note">

 <intent-filter android:label="@string/resolve_edit">

 <action android:name="android.intent.action.VIEW" />

 <action android:name="android.intent.action.EDIT" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:mimeType="vnd.android.cursor.item/vnd.google.note" />

 </intent-filter>

 <intent-filter>

 <action android:name="android.intent.action.INSERT" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:mimeType="vnd.android.cursor.dir/vnd.google.note" />

115

 </intent-filter>

 </activity>

 <activity class=".TitleEditor" android:label="@string/title_edit_title"

 android:theme="@android:style/Theme.Dialog">

 <intent-filter android:label="@string/resolve_title">

 <action android:name="com.android.notepad.action.EDIT_TITLE" />

 <category android:name="android.intent.category.DEFAULT" />

 <category android:name="android.intent.category.ALTERNATIVE" />

 <category android:name="android.intent.category.SELECTED_ALTERNATIVE" />

 <data android:mimeType="vnd.android.cursor.item/vnd.google.note" />

 </intent-filter>

 </activity>

 </application>

</manifest>

3.7 Explanation of Example

In above example, the first activity, in.edu.baou.provider.notepad,NotesList, serves

as our main entry into the app. It can do three things as described by its three intent

templates:

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

This provides a top-level entry into the NotePad application: the standard MAIN

action is a main entry point (not requiring any other information in the Intent), and the

LAUNCHER category says that this entry point should be listed in the application

launcher.

 <intent-filter>

 <action android:name="android.intent.action.VIEW" />

 <action android:name="android.intent.action.EDIT" />

 <action android:name="android.intent.action.PICK" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:mimeType="vnd.android.cursor.dir/vnd.google.note" />

 </intent-filter>

116

This declares the things that the activity can do on a directory of notes. The type

being supported is given with the <type> tag,

where vnd.android.cursor.dir/vnd.google.note is a URI from which a Cursor of zero

or more items (vnd.android.cursor.dir) can be retrieved which holds our note pad

data (vnd.google.note). The activity allows the user to view or edit the directory of

data (via the VIEW and EDIT actions), or to pick a particular note and return it to the

caller (via the PICK action). Note also the DEFAULT category supplied here: this

is required for the startActivity method to resolve your activity when its component

name is not explicitly specified.

 <intent-filter>

 <action android:name="android.intent.action.GET_CONTENT" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:mimeType="vnd.android.cursor.item/vnd.google.note" />

 </intent-filter>

This filter describes the ability to return to the caller a note selected by the user

without needing to know where it came from. The data

type vnd.android.cursor.item/vnd.google.note is a URI from which a Cursor of exactly

one (vnd.android.cursor.item) item can be retrieved which contains our note pad

data (vnd.google.note). The GET_CONTENT action is similar to the PICK action,

where the activity will return to its caller a piece of data selected by the user. Here,

however, the caller specifies the type of data they desire instead of the type of data

the user will be picking from.

Given these capabilities, the following intents will resolve to the NotesList activity:

 { action=android.app.action.MAIN } matches all of the activities that can be used

as top-level entry points into an application.

 { action=android.app.action.MAIN, category=android.app.category.LAUNCHER

} is the actual intent used by the Launcher to populate its top-level list.

 { action=android.intent.action.VIEW

data=content://com.google.provider.NotePad/notes } displays a list of all the

notes under "content://com.google.provider.NotePad/notes", which the user can

browse through and see the details on.

https://developer.android.com/reference/android/content/Intent.html#ACTION_GET_CONTENT
https://developer.android.com/reference/android/content/Intent.html#CATEGORY_DEFAULT

117

 { action=android.app.action.PICK

data=content://com.google.provider.NotePad/notes } provides a list of the notes

under "content://com.google.provider.NotePad/notes", from which the user can pick

a note whose data URL is returned back to the caller.

 { action=android.app.action.GET_CONTENT

type=vnd.android.cursor.item/vnd.google.note } is similar to the pick action, but

allows the caller to specify the kind of data they want back so that the system can

find the appropriate activity to pick something of that data type.

 The second activity, in.edu.baou.notepad.NoteEditor, shows the user a single note

entry and allows them to edit it. It can do two things as described by its two intent

templates:

 <intent-filter android:label="@string/resolve_edit">

 <action android:name="android.intent.action.VIEW" />

 <action android:name="android.intent.action.EDIT" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:mimeType="vnd.android.cursor.item/vnd.google.note" />

 </intent-filter>

The first, primary, purpose of this activity is to let the user interact with a single note,

as described by the MIME type vnd.android.cursor.item/vnd.google.note. The activity

can either VIEW a note or allow the user to EDIT it. Again we support the DEFAULT

category to allow the activity to be launched without explicitly specifying its

component.

 <intent-filter>

 <action android:name="android.intent.action.INSERT" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:mimeType="vnd.android.cursor.dir/vnd.google.note" />

 </intent-filter>

The secondary use of this activity is to insert a new note entry into an existing

directory of notes. This is used when the user creates a new note: the INSERT

action is executed on the directory of notes, causing this activity to run and have the

user create the new note data which it then adds to the content provider.

Given these capabilities, the following intents will resolve to the NoteEditor activity:

https://developer.android.com/reference/android/content/Intent.html#ACTION_INSERT
https://developer.android.com/reference/android/content/Intent.html#CATEGORY_DEFAULT

118

 {action=android.intent.action.VIEW

data=content://in.edu.baou.provider.NotePad/notes/{ID}} shows the user the

content of note {ID}.

 { action=android.app.action.EDIT data=content://

in.edu.baou.provider.NotePad/notes/{ID} } allows the user to edit the content of

note {ID}.

 { action=android.app.action.INSERT data=content://

in.edu.baou.provider.NotePad/notes } creates a new, empty note in the notes list

at "content://com.google.provider.NotePad/notes" and allows the user to edit it. If

they keep their changes, the URI of the newly created note is returned to the caller.

 The last activity, com.android.notepad.TitleEditor, allows the user to edit the title of a

note. This could be implemented as a class that the application directly invokes (by

explicitly setting its component in the Intent), but here we show a way you can

publish alternative operations on existing data:

 <intent-filter android:label="@string/resolve_title">

 <action android:name="com.android.notepad.action.EDIT_TITLE" />

 <category android:name="android.intent.category.DEFAULT" />

 <category android:name="android.intent.category.ALTERNATIVE" />

 <category android:name="android.intent.category.SELECTED_ALTERNATIVE"

/>

 <data android:mimeType="vnd.android.cursor.item/vnd.google.note" />

 </intent-filter>

 In the single intent template here, we have created our own private action

calledcom.android.notepad.action.EDIT_TITLE which means to edit the title of a

note. It must be invoked on a specific note like the previous view and edit actions,

but here displays and edits the title contained in the note data.

 In addition to supporting the default category as usual, our title editor also supports

two other standard categories: ALTERNATIVE and SELECTED_ALTERNATIVE.

Implementing these categories allows others to find the special action it provides

without directly knowing about it, through the

PackageManager.queryIntentActivityOptions(ComponentName, Intent[], Intent,

int) method, or more often to build dynamic menu items

with Menu.addIntentOptions(int, int, int, ComponentName, Intent[], Intent, int,

https://developer.android.com/reference/android/content/Intent.html#CATEGORY_DEFAULT
https://developer.android.com/reference/android/content/Intent.html#CATEGORY_ALTERNATIVE
https://developer.android.com/reference/android/content/Intent.html#CATEGORY_SELECTED_ALTERNATIVE

119

MenuItem[]). Note that in the intent template here was also supply an explicit name

for the template (via android:label="@string/resolve_title") to better control what the

user sees when presented with this activity as an alternative action to the data they

are viewing.

 Given these capabilities, the following intent will resolve to the TitleEditor activity:

 {action=com.android.notepad.action.EDIT_TITLE

data=content://com.google.provider.NotePad/notes/{ID}} displays and allows the

user to edit the title associated with note {ID}.

3.8 Standard Activity Actions

These are the current standard actions that Intent defines for launching activities

(usually through Context#startActivity. The most important, and by far most

frequently used, are ACTION_MAIN and ACTION_EDIT.

ACTION_MAIN

ACTION_VIEW

ACTION_ATTACH_DATA

ACTION_EDIT

ACTION_PICK

ACTION_CHOOSER

ACTION_GET_CONTENT

ACTION_DIAL

ACTION_CALL

ACTION_SEND

ACTION_SENDTO

ACTION_ANSWER

ACTION_INSERT

ACTION_DELETE

ACTION_RUN

ACTION_SYNC

ACTION_PICK_ACTIVITY

ACTION_SEARCH

ACTION_WEB_SEARCH

ACTION_FACTORY_TEST

3.9 Standard Broadcast Actions

These are the current standard actions that Intent defines for receiving broadcasts

(usually through registerReceiver or a <receiver> tag in a manifest).

 ACTION_TIME_TICK

 ACTION_TIME_CHANGED

 ACTION_TIMEZONE_CHANGED

 ACTION_BOOT_COMPLETED

 ACTION_PACKAGE_ADDED

 ACTION_PACKAGE_CHANGED

 ACTION_PACKAGE_REMOVED

 ACTION_PACKAGE_RESTARTED

 ACTION_PACKAGE_DATA_CLEARED

 ACTION_PACKAGES_SUSPENDED

 ACTION_PACKAGES_UNSUSPENDED

 ACTION_UID_REMOVED

 ACTION_BATTERY_CHANGED

 ACTION_POWER_CONNECTED

 ACTION_POWER_DISCONNECTED

 ACTION_SHUTDOWN

120

Check your progress-1

 Intent provides a facility for performing late runtime binding between the codes

in similar applications. (True/False)

 Which of the following is a type of intent

(A) Primary (B) Secondary (C) Both (A) and (B) (D) Neither (A) nor (B)

 Which of the following pieces of information is used for intent resolution?

(A) Action (B) Type (C) Category (D) All of these

 The intent has secondary attributes which are optional

 Which of the following is standard activity action?

(A) ACTION_MAIN (B) ACTION_VIEW (C) ACTION_EDIT (D) All of these

 Intent is an abstract description of an operation to be performed

3.10 Let us sum up

In this unit we have learned about the structure of Intent, what type of operation can

be performed on Intent, types of Intent, Intent Resolution, take example of Intent,

discussed standard Activity actions and standard broadcast actions.

3.11 Check your Progress: Possible Answers

1-a) False 1-b) (C) Both (A) and (B) 1-c) (D) All of these

1-d) True 1-e) All of these 1-f) True

3.12 Further Reading

 https://developer.android.com/reference/android/content/Intent

3.13 Assignment

 Write detailed note on Intent

 Explain types of intent

 What is Intent Resolution?

 List standard activity actions and standard broadcast actions

