

98

Unit-2: Services

Unit Structure

2.0 Learning Objectives

2.1 Introduction

2.2 Use of services

2.3 Creating a service

2.4 Start and Stop Service

2.5 Service Life Cycle

2.6 Creating your own Service

2.7 Let us sum up

2.8 Check your Progress: Possible Answers

2.9 Further Reading

2.10 Assignment

2.11 Activities

2

99

2.0 Learning Objectives

After studying this unit student will be able to

• Define service

• List the uses of services

• Create, start and stop service

• Understand service life cycle

• Create own service

2.1 Introduction

In Android a service is an application that runs in the background without any

interaction with the user. For example, while using an application, you may want to

download some file at the same time. In this case, the code that is downloading file

has no need to interact with the user, and hence it can be run as a service. Services

are also perfect for circumstances in which there is no need to present a user

interface (UI) to the user. For example, consider an application that continually logs

the geographical coordinates of the device. In this case, you can write a service to

do that in the background. You can create your own services and use them to

perform background tasks asynchronously.

To improve application responsiveness and performance, consider implementing a

service to handle the task outside the main application lifecycle. Any Services

exposed by an Android application must be registered in the Android Manifest file.

2.2 Uses Services

You can use services for different purposes. Generally, you use a service when no

input is required from the user. Here are some circumstances in which you might

want to implement or use an Android service:

• A weather, email, or social network app might implement a service to routinely

check for updates.

100

• A photo or media app that keeps its data in sync online might implement a

service to package and upload new content in the background when the device is

idle.

• A video-editing app might offload heavy processing to a queue on its service in

order to avoid affecting overall system performance for non-essential tasks.

• A news application might implement a service to “pre-load” content by

downloading news stories in advance of when the user launches the application,

to improve performance.

2.3 Creating a Service

To create service you must defined a class that extends the Service base class.

Inside your service class, you have to implement four methods discussed below:

Method Description

onStartCommand() • The system calls this method when another component,

such as an activity, requests that the service be started, by

calling startService().

• Once this method executes, the service is started and can

run in the background indefinitely.

• It is your responsibility to stop the service when its work is

done, by calling stopSelf() or stopService().

• If you only want to provide binding, you don't need to

implement this method.

onBind() • The system calls this method when another component

wants to bind with the service by calling bindService().

• In your implementation of this method, you must provide

an interface that clients use to communicate with the

service, by returning an IBinder.

• If you don't want to allow binding, then you should return

null.

onCreate() • The system calls this method when the service is first

created, to perform one-time setup procedures before it

101

Method Description

calls either onStartCommand() or onBind().

• If the service is already running, this method is not called.

onDestroy() • The system calls this method when the service is no longer

used and is being destroyed.

• This method should be implemented to clean up any

resources such as threads, registered listeners, receivers,

etc.

• This is the last call the service receives.

Table-14

2.4 Start and Stop a Service

You can use Intents and Activities to launch services using the startService() and

bindService() methods. A service can essentially take two forms. The difference

between two is as follows:

startService() bindService()

A service is "started" when an application

component starts it by calling

startService()

A service is "bound" when an application

component binds to it by calling

bindService()

Once started, a service can run in the

background indefinitely, even if the

component that started it is destroyed

A bound service runs only as long as

another application component is bound

to it. Multiple components can bind to the

service.

Usually, a started service performs a

single operation and does not return a

result to the caller. For example, it might

download or upload a file over the

network. When the operation is done, the

service should stop itself

A bound service offers a client-server

interface that allows components to

interact with the service, send requests,

get results, and even do so across

processes with inter process

communication (IPC)

Table-15

102

2.5 Service Life Cycle

Like an activity, a service has lifecycle callback methods that you can implement to

monitor changes in the service's state and perform work at the appropriate times as

discussed above. Below Figure illustrates the typical callback methods for a service

for that are created by startService() and from those created by bindService.

Figure-52

2.6 Creating your own service

We will create service to logs counter which starts from 1 and incremented by one at

interval of one second. To do so perform following steps:

1. Create a New Android Studio Project with project name ServiceDemo and Main

Activity name as ServiceActivity

2. Add new service by right click on package and select New Service Service

and click.

103

Figure-53

3. In dialog box, Enter class name as TimerService as shown in figure and press

finish Button.

Figure-54

4. Write following code inside TimerService class

package in.edu.baou.servicesdemo;

import android.util.Log;
import android.widget.Toast;

import java.util.Timer;
import java.util.TimerTask;

104

public class TimerService extends Service {
 int counter = 0;
 Timer timer = new Timer();

 public TimerService() {
 }

 @Override
 public IBinderonBind(Intent intent) {
 return null;
 }
 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
Toast.makeText(this, "Service Started!", Toast.LENGTH_LONG).show();
timer.scheduleAtFixedRate(new TimerTask() {
 public void run() {
Log.d("MyService", String.valueOf(++counter));
 }
 }, 0, 1000);
 return START_STICKY;
 }
 @Override
 public void onDestroy() {
super.onDestroy();
 if (timer != null){
timer.cancel();
 }
Toast.makeText(this, "Service Destroyed!", Toast.LENGTH_LONG).show();
 }
}

5. In android_service.xml file add the following statements in bold

<RelativeLayoutxmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
android:paddingBottom="@dimen/activity_vertical_margin"
tools:context=".ServiceActivity">

<TextViewandroid:text="Service Demonstration"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:id="@+id/textView" />

<Button
android:layout_width="match_parent"

105

android:layout_height="wrap_content"
android:text="Start Timer Service"
android:id="@+id/btnStartTimer"
android:layout_alignParentLeft="true"
android:layout_alignParentStart="true"
android:layout_below="@+id/textView" />

<Button
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="Stop Timer Service"
android:id="@+id/btnStopTimer"
android:layout_below="@+id/btnStartTimer"
android:layout_alignParentLeft="true"
android:layout_alignParentStart="true" />

</RelativeLayout>

6. Add the following statements in bold to the ServiceActivity.java file:

package in.edu.baou.servicesdemo;

import android.content.Intent;
import android.view.View;
import android.widget.Button;
public class ServiceActivity extends ActionBarActivity {

 Button startTimer,stopTimer;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_service);

startTimer = (Button)findViewById(R.id.btnStartTimer);
stopTimer = (Button)findViewById(R.id.btnStopTimer);

startTimer.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
startService(new Intent(getBaseContext(), TimerService.class));
 }
 });

stopTimer.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
stopService(new Intent(getBaseContext(), TimerService.class));
 }

106

 });
}

7. Press Shift+F10 or ‘Run App’ button in taskbar. It will launch following dialog box.

Press OK.

Figure-55

8. It will open activity in emulator as shown below. Clicking the START TIMER

SERVICE button will start the service as shown below. To stop the service, click

the STOP TIMER SERVICE.

Figure-56

107

9. Once service is started, you can see counter value incremented by in LogCat

window

Figure-57

Explanation

 Inside project layout file we created two buttons to start and stop service with ID

btnStartTimer and btnStopTimer..

 Inside ServiceActivity we define two button objects that represents button in

layout file.

 The findViewByID() method is used to take reference of button.

 Button clicked event is handled by onClick() method of OnClickListener

associated to button using setOnClickListener().

 Inside TimerService class we define counter variable which initialized to zero at

the start of service and increment by one every one second using Timer class

scheduledAtFixedRate() Method.

 The value of counter is logs inside LogCat window using Log.d() Method with tag

“MyService”.

 Toast is temporary message displayed on screen such as “Service Started” in

step-8 and is displayed using makeText method of Toast class.

Check you progress-1
a) Services are perfect for circumstances in which there are no need to present a

user interface (UI) to the user. (True/False)

b) You can use Intents and Activities to launch services using the _____ methods.

(A) startService() (B) bindService()

(C) Either (A) or (B) (D) None of these

c) Once _________ method executes, the service is started and can run in the

background indefinitely.

d) A service is "bound" when an application component binds to it by calling ______

108

e) Generally, you use a service when to interact with the user.

f) Any Services exposed by an Android application must be registered in the

Android Manifest file.

2.7 Let us sum up

In this unit we have learn about service, uses of services, how to create, start and

stop services. We have also discussed service life cycle and demonstrated how to

create your own service.

2.8 Check your Progress: Possible Answers

1-a) True

1-b) (C) Either (A) or (B)

1-c) onStartCommand()

1-d) bindService()

1-e) False

1-f) True

2.9 Further Reading

1. https://developer.android.com/reference/android/app/Service

2.10 Assignment

• Differentiate between startService() and bindService()

• Explain service life cycle

• List uses of services

2.11 Activity

• Creating your own service

