

232

Unit 4: Exception classes

Unit Structure

4.1 Learning Objectives

4.2 throw keyword

4.3 Built in Exception classes

4.4 Use defined Exception class

4.5 throws keyword

4.6 Throwable class

4.7 Chained Exception

4.8 Let us sum up

4.9 Check your Progress

4.10 Check your Progress: Possible Answers

4.11 Further Reading

4.12 Assignments

4

233

4.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

 Understand the use of throw keyword in exception handling.

 Study and understand the various built-in exception classes and their usage in

java program.

 Learn how to create user defined exception class and use it in java program.

 Understand the throws keyword and its use in program.

 Study the Throwable class.

4.2 THROW KEYWORD

 In Java exception handling mechanism uses the throw keyword to explicitly

raise an exception from a function or a block of code. It can also be used to raise

user defined exception.

Syntax:

throw obj;

Here the object must be of Throwable type or subclass of Throwable. The flow of

execution of the program stops immediately after the throw statement is executed

and the nearest enclosing try block is checked to see if it has a catch statement that

matches the type of exception. If it finds a match, controlled is transferred to that

statement otherwise next enclosing try block is checked and so on. If no matching

catch is found then the default exception handler will halt the program.

For example,

Example1,

class ThrowExcep

{

 static void thr_fun()

 {

234

try {

 throw new ArithmeticException ("demo");

 }

 catch(ArithmeticException e)

 {

 System. out. println ("Caught inside thr_fun().");

 throw e;

 }

 }

 public static void main(String args[])

 {

 try

 {

 thr_fun();

 }

 catch(ArithmeticException e)

 {

 System. out. println ("Caught in main function.");

 }

 }

}

Figure-81 Output of program

 As you can see in above program the try block doesn‘t have any program

logic which may raise an error/exception. We have used throw keyword which

explicitly throws an object of ArithmeticException, which will be caught in catch

block.

235

Example 2,

import java.util.Scanner;

import java.util.InputMismatchException;

public class ExErr {

 public static void main(String args[]) throws Exception {

 int a[] = { 3, 4, 5, 6, 7, 8};

 int i;

 try {

 Scanner sc = new Scanner (System.in);

 System. out. println (" index = ");

 i = sc.nextInt();

 if (i >= 6)

 {

 ArrayIndexOutOfBoundsException ex = new ArrayIndexOutOfBoundsException();

 Throw ex;

 }

 else

 System. out. println (" a[i] = " + a[i]);

 } catch (ArrayIndexOutOfBoundsException e) {

 System. out. println ("Error occured as the value of i is >=6 ");

 }

 }

}

Figure-82 Output of program

236

4.3 BUILT IN EXCEPTION CLASSES

 In java library (java.lang package), many built-in unchecked exception

classes are available. Most common classes are the subclass of RuntimeEception

class. These classes are automatically handling the runtime errors while executing

java program.

The following is the list of Java Unchecked Exception classes derived from

RuntimeException.

1). ArithmeticException : Arithmetic error, such as divide-by-zero.

2). ArrayIndexOutOfBoundsException : Array index is out-of-bounds.

3). ArrayStoreException : Assignment to an array element of an incompatible type.

4). ClassCastException : Invalid cast.

5). IllegalArgumentException : Illegal argument used to invoke a method.

6). IllegalMonitorStateException :Illegal monitor operation, such as waiting on an

unlocked thread.

7). IllegalStateException : Environment or application is in incorrect state.

8). IllegalThreadStateException : Requested operation not compatible with the

current thread state.

9). IndexOutOfBoundsException : Some type of index is out-of-bounds.

10). NegativeArraySizeException : Array created with a negative size.

11). NullPointerException : Invalid use of a null reference.

12). NumberFormatException : Invalid conversion of a string to a numeric

format.

13). SecurityException : Attempt to violate security.

14). StringIndexOutOfBounds : Attempt to index outside the bounds of a

string.

15). UnsupportedOperationException : An unsupported operation was

encountered.

 There are also many built-in checked Exception classes readily available for

handling various errors in various packages. The following is the list of such

exception classes.

1). IOException : This class is available in java.io package. It handles the IO

operation related runtime errors.

237

2). FileNotFoundException : This class is available in java.io package. It is used to

handle the runtime error when we try to access a file which is not exists.

3). ParseException : This class is available in java.text package. For example, this

exception raise when you are trying to parse a String to a Date Object and the

string is not containing date format.

4). ClassNotFoundException : This class is available in java.lang package. It is a

runtime exception that is thrown when an application tries to load a class at

runtime using the Class.forName() or loadClass() or findSystemClass() methods

,and the class with specified name are not found in the classpath.

5). CloneNotSupportedException : This class is available in java.lang package.

The java.lang.Cloneable interface must be implemented by the class whose

object clone we want to create. If we don't implement Cloneable interface, clone()

method generates CloneNotSupportedException. (refer last example of 3.12

block 1)

6). InstantiationException : This class is available in java.lang package. When we

try to instantiate the abstract class or interface using the newInstance() method of

Class class, then this exception will be thrown.

7). InterruptedException : This class is available in java.lang package. The

InterruptedException is thrown when a thread is waiting or sleeping and another

thread interrupts it using the interrupt method in class Thread . (The thread will

be discussed in detail in block 3).

8). NoSuchMethodException : This class is available in java.lang package. This

exception occur when we are trying to run our java program which does not have

main method in it.

9). NoSuchFieldException : This class is available in java.lang package. This

exception is used to send a signals that the class doesn't have a field of a

specified name.

10). SQLException : This class is available in java.sql package. This exception is

raised when our program tries to interact with dbms software and due to some

error not getting response.

11). SocketException : This class is available in java.net package. This exception

occurs when our program is performing network programming using socket.

238

12). RemoteException : This class is available in java.rmi package. This

exception occurs when we are calling remote method in our program and any

error encounter.

4.3.1 EXAMPLES OF BUILT-IN EXCEPTION

 ArithmeticException

class ExException {

public static void main(String args[])

 {

 try {

 int a = 30;

 int b = 0;

 int c = a / b;

 System. out. println ("Result = " + c);

 }

 catch (ArithmeticException e) {

 System. out. println ("Divide by zero error");

 }

 }

}

Figure-83 Output of program

 ArrayIndexOutOfBoundsException

class ExException {

public static void main(String args[])

 {

 try {

 int a[] = { 1, 2, 3, 4, 5 } ;

 a[6] = 9;

 }

 catch (ArrayIndexOutOfBoundsException e) {

239

 System. out. println ("Index of array is more than 5");

 }

 }

}

Figure-84 Output of program

 ClassNotFoundException

class ABC {

 }

class XYZ {

}

class ExException {

public static void main(String[] args)

 {

 try{

 Object o = Class.forName(args[0]).newInstance();

 System. out. println ("Class created for" + o.getClass().getName());

 }

 catch (Exception e)

 { System. out. println ("Class " + args[0] + " not found "); }

 }

}

Figure-85 Output of program

 FileNotFoundException

240

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileReader;

class File_notFound_Demo {

public static void main(String args[])

 {

 try {

 File file = new File("E:// file.txt");

 FileReader fr = new FileReader(file);

 }

 catch (FileNotFoundException e) {

 System. out. println ("File does not exist");

 }

 }

}

Figure-86 Output of program

 IOException

import java.io.*;

class ExException {

public static void main(String args[]) {

 FileInputStream f = null;

 f = new FileInputStream("abc.txt");

 int i;

 while ((i = f.read()) != -1) {

 System.out.print((char)i); }

 f.close();

 }

}

241

Figure-87 Output of program

 InterruptedException

class ExException {

public static void main(String args[])

 {

 Thread t = new Thread();

 t.sleep(10000);

 }

}

Figure-88 Output of program

 NullPointerException

class ExException {

public static void main(String args[]) {

 try {

 String a = null;

 System. out. println (a.charAt(0));

 }

 catch (NullPointerException e) {

 System. out. println ("NullPointerException..");

 }

 }

}

242

Figure-89 Output of program

 NumberFormatException

class ExException {

public static void main(String args[])

 {

 try {

 int num = Integer.parseInt("hello");

 System. out. println (num);

 }

 catch (NumberFormatException e) {

 System. out. println ("Number format exception");

 }

 }

}

Figure-90 Output of program

 StringIndexOutOfBoundsException

class ExException {

public static void main(String args[]) {

 try {

 String a = "Hello this is aryu";

 char c = a.charAt(24);

 System. out. println (c);

 }

 catch (StringIndexOutOfBoundsException e) {

 System. out. println ("StringIndexOutOfBoundsException");

 }

 }

}

243

Figure-91 Output of program

 ClassCastException

class ExException {

public static void main(String[] args)

 {

 String s = new String("Hello");

 Object obj = (Object) s;

 Object o1 = new Object();

 String s1 = (String) o1;

 }

}

Figure-92 Output of program

4.4 USER DEFINED EXCEPTION CLASS

 In java, we can create our own exception class by creating a class which

extends Exception class.

 The following example shows us the syntax of writing a custom exception

class. In this example, the NegativeException class is created which extends an

Exception class. We just have to write a constructor for initialization and toString

function to print our own message. Here the negative exception is raised when

entered value is negative. For this we have to check the entered value and throw an

object of NegativeException if the value is negative. Similarly we can user defined

exception class for checking our own condition for input.

244

import java.util.Scanner;

class NegativeException extends Exception

 {

 private int x;

 NegativeException(int a)

 {

 x=a;

 }

 public String toString()

 {

 return "NegativeException[" + x +"] : value is less than zero";

 }

 }

public class UDException

{

 public static void main (String args[])

 {

 int a;

 Scanner sc = new Scanner (System.in);

 try {

 System. out. println ("Enter a: ");

 a = sc.nextInt();

 if(a < 0)

 throw (new NegativeException(2));

 else

 System. out. println (" a = " + a);

 } catch (Exception e) { System. out. println (e); }

 }

}

245

Figure-93 Output of program

4.5 THROWS KEYWORD

 If you do not handle the checked exception using a try catch block, compiler

will give error message. Each and every program statement in java program is

written in a method. Almost every method in the java library or even user defined

may throw an exception or two. Handling all the exceptions using the try and catch

block could be cumbersome and complex for coder.

 Hence java provides an option, wherein whenever your code in the method

definition may raise exception, you can declare that method with throws keyword

followed by the exception or exceptions separated by comma. In this case we can

omit writing code in try and catch block.

For example,

Example 1,

class ExException {

public static void main(String[] args) throws ClassCasteException

 {

 String s = new String("Hello");

 Object obj = (Object) s;

 Object o1 = new Object();

 String s1 = (String) o1;

 }

}

Example 2,

246

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileReader;

class File_notFound_Demo {

public static void main(String args[]) throws FileNotFoundException

 {

 File file = new File("E:// file.txt");

 FileReader fr = new FileReader(file);

 }

}

Example 3,

public class UDException

{

 public static void main (String args[]) throws NegativeException,

InputMismatchException

 {

 int a;

 Scanner sc = new Scanner (System.in);

 System. out. println("Enter a: ");

 a = sc.nextInt();

 if(a < 0)

 throw (new NegativeException(2));

 else

 System. out. println (" a = " + a);

 }

}

247

4.6 THROWABLE CLASS

 The java.lang.Throwable class is the super class of all errors and exceptions

classes in the Java language. The objects which are the instances of this class are

thrown by the Java Virtual Machine or can be thrown by the Java throw statement.

The Throwable class extends the Object class and implements Serializable interface.

The following are some of the methods of Throwable class.

1). Throwable fillInStackTrace() : This method fills in the execution stack trace.

2). Throwable getCause() : This method returns the cause of this throwable or null

if the cause is nonexistent or unknown.

3). String getLocalizedMessage() : This method creates a localized description of

this throwable.

4). String getMessage() : This method returns the detail message string of this

throwable.

5). StackTraceElement[] getStackTrace() : This method provides programmatic

access to the stack trace information printed by printStackTrace().

6). Throwable initCause(Throwable cause) : This method initializes the cause of

this throwable to the specified value.

7). void printStackTrace() : This method prints this throwable and its backtrace to

the standard error stream.

8). void printStackTrace(PrintStream s) : This method prints this throwable and its

backtrace to the specified print stream.

9). void printStackTrace(PrintWriter s) : This method prints this throwable and its

backtrace to the specified print writer.

10). void setStackTrace(StackTraceElement[] stackTrace) : This method sets

the stack trace elements that will be returned by getStackTrace() and printed by

printStackTrace() and related methods.

11). String toString() : This method returns a short description of this Throwable.

4.7 CHAINED EXCEPTION

 The chained exception allows you to link an exception with other exception.

The former exception is the cause of later exception. For example, in a program we

248

are getting numerator and denominator from a file. While reading a denominator

number from a file, due to IOException if we get zero value, it we may get

ArithmeticException. Thus the cause of ArithmeticException is the IOException. If we

want to inform programmer about this, chain exception concept is used.

For example,

import java.io.*;

public class LinkedException

{

static void raiseLinkedException() {

 ArithmeticException e = new ArithmeticException(" top most exception ");

e.initCause(new IOException(" cause "));

throw e;

}

public static void main (String args[])

{

try {

raiseLinkedException();

} catch (ArithmeticException ex) {

System. out. println (" caught : " + ex);

System. out. println (" cause : " + ex.getCause());

}

}

}

Figure-94 Output of program

4.8 LET US SUM UP

throw keyword :. This keyword is used to throw an exception class object even if

the error is not occurred.

249

Built in exception class : The java libraries have various readymade exception

class available which can be used to handle different errors occurred during

programming in java.

User defined exception class: If built in exception class can not be used for some

programmer defined validation check user can create custom exception class.

throws keyword: They can be used in place of try and catch block. It can be used

with method declaration along with exception name.

Throwable class : it is a parent class of all exception and error classes.

Chained Exception : It is a concept in java using which we can create a chain of

exceptions. In this chain the upper exception is raised because of lower exception in

the chain.

4.9 CHECK YOUR PROGRESS

 True-False with reason

1. Throw and throws keyword can be used for the same purpose.

2. Throwable is an interface.

3. The exception must be handled using try … catch block

4. We can handle exception without using try and catch.

5. Throw keyword explicitly raise an exception error.

 Match A and B.

 A B

 1)Throw a)it is custom exception class

 2)Throws b)this keyword is used to throw exception

 3)Throwable c)it is exception class available in java library

 4)User define Exception d)it is an option of try and catch

 5)Built in Exception e)it is a parent of all exception class

 Answer the following:

250

1. Which keyword is used to raise an exception?

2. Compare throw and throws.

3. Compare built in exception and user define exception

 MCQ

1. Consider the following try…….. catch block
class TryCatch

{

public static void main(String args[])

{

try

{

double x = 0.0;

throw (new Exception(―Thrown‖));

return;

}

catch(Exception e)

{

System. out. println (―Exception caught‖);

return;

}

finally

{

System. out. println (―finally‖);

}

}

}

 What will be the output.

a) Exception caught

b) Exception caught finally

c) finally

d) Thrown

2. In below java program, which exception will occur?

251

public static void main(String[] args) {

 FileReader file = new FileReader("test.txt");

 }

a) NullPointerException at compile time

b) NullPointerException at run time

c) FileNotFoundException at compiler time

d) FileNotFoundException at runtime

3. which answer most closely indicates the behavior of the program?

public class MyProgram

{
 public static void throwit()
 {
 throw new RuntimeException();
 }
 public static void main(String args[])
 {
 try
 {
 System. out. println ("Hello world ");
 throwit();
 System. out. println ("Done with try block ");
 }
 finally
 {
 System. out. println ("Finally executing ");
 }
 }
}

a) The program will not compile.

b) The program will print Hello world, then will print that a RuntimeException has

occurred, then will print Done with try block, and then will print Finally

executing.

c) The program will print Hello world, then will print that a RuntimeException has

occurred, and then will print Finally executing.

d) The program will print Hello world, then will print Finally executing, then will

print that a RuntimeException has occurred.

4. What will be the output of the program?

public class RTExcept

252

{
 public static void throwit ()
 {
 System.out.print("throwit ");
 throw new RuntimeException();
 }
 public static void main(String [] args)
 {
 try
 {
 System.out.print("hello ");
 throwit();
 }
 catch (Exception re)
 {
 System.out.print("caught ");
 }
 finally
 {
 System.out.print("finally ");
 }
 System. out. println ("after ");
 }
}

a) hello throwit caught

b) Compilation fails

c) hello throwit RuntimeException caught after

d) hello throwit caught finally after

5. What will be the output of the program?

class Exc0 extends Exception { }

class Exc1 extends Exc0 { }
public class Test
{
 public static void main(String args[])
 {
 try
 {
 throw new Exc1();
 }
 catch (Exc0 e0)
 {
 System. out. println ("Ex0 caught");
 }
 catch (Exception e)
 {
 System. out. println ("exception caught");

253

 }
 }
}

a) Ex0 caught

b) exception caught

c) Compilation fails because of an error at line 2.

d) Compilation fails because of an error at line 9.

6. What is the output of following Java program

class Main {

 public static void main(String args[]) {
 try {
 throw 10;
 }
 catch(int e) {
 System. out. println ("Got the Exception " + e);
 }
 }
}

a) Got the Exception 10

b) Got the Exception 0

c) Compiler Error

7. What is the output of following Java program

class Test extends Exception { }

class Main {
 public static void main(String args[]) {
 try {
 throw new Test();
 }
 catch(Test t) {
 System. out. println ("Got the Test Exception");
 }
 finally {
 System. out. println ("Inside finally block ");
 }
 }
}

a) Got the Test Exception Inside finally block

b) Got the Test Exception

c) Inside finally block

d) Compiler Error

8. What is the output of following Java program

254

class Base extends Exception {}

class Derived extends Base {}

public class Main {

 public static void main(String args[]) {

 // some other stuff

 try {

 // Some monitored code

 throw new Derived();

 }

 catch(Base b) {

 System. out. println ("Caught base class exception");

 }

 catch(Derived d) {

 System. out. println ("Caught derived class exception");

 }

 }

}

a) Caught base class exception

b) Caught derived class exception

c) Compiler Error because derived is not throwable

d) Compiler Error because base class exception is caught before derived class

9. What is the output of following Java program

class Test

{
 public static void main (String[] args)
 {
 try
 {
 int a = 0;
 System. out. println ("a = " + a);
 int b = 20 / a;
 System. out. println ("b = " + b);
 }

 catch(ArithmeticException e)
 {
 System. out. println ("Divide by zero error");

255

 }

 finally
 {
 System. out. println ("inside the finally block");
 }
 }
}

a) Compile error

b) Divide by zero error

c) a = 0

Divide by zero error

inside the finally block

d) a = 0

e) inside the finally block

10. What is the output of following Java program

class Test

{
 public static void main(String[] args)
 {
 try
 {
 int a[]= {1, 2, 3, 4};
 for (int i = 1; i <= 4; i++)
 {
 System. out. println ("a[" + i + "]=" + a[i] + "\n");
 }
 }

 catch (Exception e)
 {
 System. out. println ("error = " + e);
 }

 catch (ArrayIndexOutOfBoundsException e)
 {
 System. out. println ("ArrayIndexOutOfBoundsException");
 }
 }
}

a) Compiler error

b) Run time error

c) ArrayIndexOutOfBoundsException

d) Error Code is printed

256

e) Array is printed

11. Given the following piece of code:

class SalaryCalculationException extends Exception{}

class Person{
 public void calculateSalary() throws SalaryCalculationException{
 //...
 throw new SalaryCalculationException();
 //...
 }
}
class Company{
 public void paySalaries(){
 new Person().calculateSalary();
 }
}

Which of the following statements is correct?

1. This code will compile without any problems.

2. This code will compile if in method paySalaries() we return a boolean in stead of

void.

3. This code will compile if we add a try-catch block in paySalaries().

4. This code will compile if we add throws SalaryCalculationException in the

signature of method paySalaries().

a) 1 and 4

b) 2 and 3

c) 2 and 4

d) 3 and 4

12. What will be the output of the following piece of code:

class Person{

 public void talk() {}
}
public class Test{
 public static void main(String args[]){
 Person p = null;
 try{
 p.talk();
 }
 catch(NullPointerException e){
 System.out.print("There is a NullPointerException. ");
 }
 catch(Exception e){
 System.out.print("There is an Exception. ");
 }
 System.out.print("Everything went fine. ");

257

 }
}

a) There is a NullPointerException. Everything went fine.

b) There is a NullPointerException.

c) There is a NullPointerException. There is an Exception.

d) This code will not compile, because in Java there are no pointers.

13. What will be the result if NullPointerException occurs at line 2?

 try{

 //some code goes here

 }

 catch(NullPointerException ne){

 System.out.print("1 ");

 }

 catch(RuntimeException re){

 System.out.print("2 ");

 }

 finally{

 System.out.print("3");

 }

a) 1
b) 3

c) 2 3
d) 1 3

14. What is the output of following Java program

public class Test{

 public static void main(String args[]){

 try{

 String arr[] = new String[10];

 arr = null;

 arr[0] = "one";

 System.out.print(arr[0]);

 }catch(Exception ex){

 System.out.print("exception");

 }catch(NullPointerException nex){

 System.out.print("null pointer exception");

258

 }

 }

}

a) "one" is printed.

b) "exception" is printed.

c) "null pointer exception" is printed.

d) Compilation fails saying NullPointerException has already been caught.

15. Given the code. What is the result when this program is executed?

public class Test{

 static int x[];

 static{
 x[0] = 1;
 }

 public static void main(String args[]){
 }
}

a) ArrayIndexOutOfBoundsException is thrown

b) ExceptionInInitializerError is thrown

c) IllegalStateException is thrown

d) StackOverflowException is thrown

4.10 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

 True-False with reason

1. False. Throw keyword is used to raise exception programmatically while

throws used with method declaration declaring that this method might

raised an exception.

2. False. Throwable is a class.

3. False. The checked exception must be handled using try … catch block

4. True

5. True

259

 Match A and B.

 A B

 1)Throw a)it is custom exception class

 2)Throws b)this keyword is used to throw exception

 3)Throwable c)it is exception class available in java library

 4)User define Exception d)it is an option of try and catch

 5)Built in Exception e)it is a parent of all exception class

Answer:

1) – b, 2) – d, 3) – e, 4) – a, 5) - c

 Answer the following:

1. ―throw‖ keyword is used to raise an exception.

2. throw v/s throws

throw throws

It is used to raise exception

explicitly

It is used with method which

may raise exception

It is used with user defined

exception class

It is an option for try and catch

3. Built in exception v/s User define exception

Built in exception User define exception

They are the readily available

classes used to handle runtime

errors

They are the class created by

user which extends Exception

class and raised by user on

specific condition.

They are raised when runtime

error.

They must be raised by user

using throw keyword

 MCQ

1) b

2)c

3) d

4) d

5) a

6) c

7) a

8) d

9) c

10) a

11) d

12)a

13)d

14) d

15) b

260

4.11 FURTHER READING

1) Java - User Defined Exceptions | Learn JAVA Online | Fresh2Refresh ...

 https://fresh2refresh.com › Java Tutorial

2) User defined Exception subclass in Java Exception Handling | Core ...

 https://www.studytonight.com/java/create-your-own-exception.php

3) ―Java 2: The Complete Reference‖ by Herbert Schildt, McGraw Hill

Publications.

4) ―Effective Java‖ by Joshua Bloch, Pearson Education

4.12 ASSIGNMENTS

1) Create a class name account with attributes like account number, name, type of

account, balance etc. and methods like get account information, print account

details, deposit and withdraw. Create an exception class which raised when

account balance is below 2000 while withdrawal. Also raise exception when

negative amount is sent to deposit function. Create a class with main method to

demonstrate the function of account class and exception classes.

2) Create a class name student which stores information like roll number, name,

phone number, address, course etc. Write a function which accepts an object of

student to add a new student in existing list of student. While adding check for roll

number. The roll number should be in 3 digit. Implement this check usinf user

define exception class.

https://www.studytonight.com/java/create-your-own-exception.php

