

347

Unit 4: I/O Files in Java

Unit Structure

4.1 Learning Objectives

4.2 Outcomes

4.3 Introduction

4.4 Concepts of Streams

4.5 Difference between CharacterStreams and ByteStreams

4.6 CharacterStreams

4.7 ByteStreams

4.8 Other Classes

4.9 Let us sum up

4.10 Check your Progress: Possible Answers

4.11 Further Reading

4.12 Assignments

4

348

4.1 LEARNING OBJECTIVE

After learning this unit, students,will be able to:

 Define streams

 Describe the use of character streams

 Describe the use of byte streams

 Describe RandomAccessFile, StreamTokenizer

 Access File

4.2 OUTCOMES

After learning the contents of this chapter, the students will be able to:

 Define Streams

 Differentiate byte stream and character stream

 Implement buffered based input and output operation apart from other

important stream classes like object input and output, data input and output,

piped input and output etc.

 Implement File handling operation to read and write content from and to the

file.

 Perform random read and write operation on the file

4.3 INTRODUCTION

 Java I/O stands for Java Input / Output and is contained in java.io package.

This package has an Input Stream and Output Stream classes. Input Stream classes

are used for reading the stream, byte stream and array of byte stream. This can be

used for memory allocation. The Output Stream classes are used for writing byte and

array of bytes.

 In this chapter, we are going to dicuss and learn the use of streams that can

handle all kinds of data including primitive values to advanced objects.

349

4.4 CONCEPTS OF STREAM

 Streams are the sequence of data or information. The other streams help in

adding capabilities, like the ability to read a whole chunk of data at once for

performance reasons (BufferedInputStream) or converting data from one kind of

character set to Java's native unicode (Reader), or where the data is coming from

(FileInputStream, SocketInputStream and ByteArrayInputStream, etc.).

 Some input-output stream initialized automatically by the JVM and these

streams are available in System class. These strems are,

1. System.out: it is a standard output stream. It refers to the default output device,

i.e. console.

2. System.in: It is a standard input stream. It refers the default input device, i.e.

keyboard.

3. System.err: It is a standard error stream. It refers to the default output device,

i.e. console.

Two types of streams are there, Input Streams and Output Streams.

 Input Streams: It is used to read the data from different input devices like

keyboard, file, network etc.

 Output Streams: It is used to write the data to different output devices like

monitor, file, network etc.

Based on data, streams are divided in two types:

1. Byte Stream: Byte stream performs input and output on 8-bit bytes. Byte

stream classes are used to read or write byte data. InputStream is used to

read and Output Stream is used to write byte data. InputStream and Output

Stream class are abstract classes and they are the super classes of all the

input byte streams and output byte streams.

2. Character Stream: Character stream is used to read and write data in 16 bit

Unicode characters. These classes are used for reading or writing character

data. Reader and Writer are abstract classes.

350

 Exceptions Handling during I/O in Java

 Exception is an abnormal condition and it must be avoided. In java IO almost

all input or output method throws an exception. Therefore, it is required to enclose

I/O operation in the try and catch block. All the I/O exceptions are derived from

IOException class. Generally you can catch IOException a super class, which will

catch all the derived class exceptions. For some exceptions thrown by I/O which are

not in super class, we have to take extra care to catch them while wrting IO

programs.

4.5 DIFFERENCE BETWEEN CHARACTERSTREAMS AND
BYTESTREAMS

By definition:

Character Stream performs input and output operations of 16-bit Unicode while Byte

Stream performs input and output of 8-bit bytes.

By use:

Character stream is used to read character either from Socket or text file. Byte

streams should only be used for the primitive I/O.

By datatype:

Character oriented streams can read only string type or character type while byte

oriented streams are not tied to any datatype. Data of any datatype can be read in

byte stream (except string).

By access:

Character oriented stream reads character by character while Byte oriented stream

reads byte by byte.

By encoding:

Character oriented streams use character encoding scheme (UNICODE) while byte

oriented do not use any encoding scheme.

351

By associated classes:

Character oriented streams are reader and writer streams while Byte oriented

streams are data streams i.e. Data input stream and Data output stream.

 Check Your Progress 1

1) Divide the classes in Low level vs High Level to read / write data from files.

……………………………………………………………………………………

……………………………………………………………………………………

2) Define Stream, Readers / Writers and Buffer.

……………………………………………………………………………………

……………………………………………………………………………………

3) Differentiate Byte Stream and Character Stream.

……………………………………………………………………………………

……………………………………………………………………………………

4.6 CHARACTER STREAMS

 Character Stream contains classes that are used to read characters from the

source file and write characters to destination file. The following table depicts

different classes for Character Streams.

Stream class Description

Reader This class is an abstract class that define character stream

input.

Writer This class is an abstract class that define character stream

output.

BufferedReader

This class handles buffered input stream.

- LineNumberReader is extends BufferedReader

BufferedWriter This class handles buffered output stream.

352

FileReader

This class handles input stream that reads from file. It

extends InputStreamReader

FileWriter

This class handles output stream that writes to file. It extends

OutputStreamWriter

InputStreamReader

This class handles input stream that translate byte to

character

OutputStreamWriter

This class handles output stream that translate character to

byte.

PrintWriter

This class handles output Stream that contain print() and

println() method.

FilterReader This class is used to perform filtering operation

on reader stream. It is an abstract class.

- PushBackReader class extends FilterReader

FilterWriter This class is an abstract class used to write filtered character

streams.

CharArrayReader This class is consists of two words: CharArray and Reader. It

is used to read character array as a reader (stream). It

extends Reader class.

CharArrayWriter This class is used to write common data to multiple files. This

class extends Writer class.

PipedReader This class is used to read the contents of a pipe as a stream

of characters. It is used generally to read text.

PipedWriter This class is used to write data to a pipe as a stream of

characters. It is used generally for writing text.

StringReader This class is a character stream with string as a source. It

accepts an input string and changes it into character stream.

It extends Reader class.

https://www.javatpoint.com/java-reader-class
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/array-in-java
https://www.javatpoint.com/java-reader-class
https://www.javatpoint.com/java-writer-class
https://www.javatpoint.com/object-class
https://www.javatpoint.com/java-8-stream
https://www.javatpoint.com/java-string
https://www.javatpoint.com/java-reader-class

353

StringWriter This class is a character stream that collects output from

string buffer, which can be used to construct a string. The

StringWriter class extends the Writer class.

Table-12 Classes for Character Streams

There are two types of Character Stream classes: Reader and Writer classes.

1. Reader Classes:

These classes are subclasses of an abstract class Reader and they are used to

read characters from a source like file, memory or console. Being abstract class

we can't create its object but we can use its subclasses for reading characters

from the input stream.

2. Writer Classes:

These classes are subclasses of an abstract class Writer and they used to write

characters to a destination like file, memory or console. Being abstract class we

can't create its object but we can use its subclasses for writing characters to the

output stream.

The main methods for reading from and writing to character streams found in reader

and writer classes and their child classes are given below:

 int read()

 int read(char cbuff[])

 int read(char cbuff[], int offset, int length)

 int write(int ch)

 int write(char cbuff[])

 int write(char cbuff[], int offset, int length)

4.6.1 Inputstreamreader Class And Outputstreamwriter

 InputStreamReader class is wrapped around an inputstream to read data in

the form of characters from it, so InputStreamReader class acts as

a converter of bytes to characters.

Constructor:

InputStreamReader (InputStream inst)

https://www.javatpoint.com/java-string
https://www.javatpoint.com/java-writer-class

354

This constructor creates an InputStreamReader object wrapped around an

InputStream to read data from it in the form of characters.

Example:

FileInputStream fis = new FileInputStream("D://Test.txt");

InputStreamReader isread = new InputStreamReader(fis);

Here, In this example we have wrapped an InputStream i.e. FileInputStream, inside

InputStreamReader. FileInputStream class reads data from a file Test.txt as bytes

and then this data is converted to characters, when it is read using

InputStreamReader class.

 OutputStreamWriter

 OutputStreamWriter class is a subclass of Writer class. Using

OutputStreamWriter class allows us to convert a character, character arrays or a

String to bytes before it is written to an output stream. OutputStreamWriter class

works as a converter of characters to bytes.

Constructor:

OutputStreamWriter (OutputStream outstr)

This constructor creates an OutputStreamWriter object wrapped around an

OutputStream to write data to this OutputStream in the form of bytes.

Example-:

char data[] ={‘B’, ‘A’, ‘O’, ‘U’};

FileOutputStream fostm = new FileOutputStream(“D://Test.txt”);

OutputStreamWriter oswt = new OutputStreamWriter (fostm);

Here, FileOutputStream object is wrapped inside the OutputStreamWriter. Only

bytes can be written through FileOutputStream. OutputStreamWriter class will first

convert the characters in a character array data, to bytes before writing them to a file

Test.txt using FileOutputStream.

Now, we will try to understand read and write operation with help of programs.

355

// Program to write a String and character array using OutputStreamWriter and

reading back the same file using InputStreamReader.

import java.io.*;

public class Outstreamwriter

{

 public static void main(String[] arg)

 {

 String str=" BAOU";

 char[] arrdata= {'V','I','D','Y','A','P','I','T','H'};

 try

 {

 FileOutputStream fos= new FileOutputStream("Test1.txt");

 OutputStreamWriter osw= new OutputStreamWriter(fos);

 // writing each character of character array using for-each loop

 for(char ch : arrdata)

 {

 osw.write(ch);

 }

 //writing a String

 osw.write(str);

 osw.flush();

 osw.close();

 }

 catch(IOException e)

 {

 System.out.println(e);

 }

 try

 {

 FileInputStream fis= new FileInputStream("Test1.txt");

 InputStreamReader isr= new InputStreamReader(fis);

 int data;

356

 while((data=isr.read())!=-1)

 {

 System.out.print((char)data);

 }

 }

 catch(IOException e)

 {

 System.out.println(e);

 }

 }

}

 This program will create a file named Test1.txt, writes a character array first

and then string in to it. After that, the same file is read by using InputStreamReader.

The out put of the program is shown below.

Output:

VIDYAPITH BAOU

4.6.2 BufferedReader and BufferedWriter

 BufferedReader and BufferedWriter class in java are classified as buffered I/O

streams. Buffered input stream reads text from a memory area i.e. buffer and buffered

output stream writes data to a buffer. For unbuffered Input and Output stream, every

read or write request is handled directly by the underlying Operating System. This

makes a program less efficient as every request involves disk access, network activity

etc. So, it is adviced to use buffered I/O streams as opposed to Scanner and

PrintWriter classes. The buffer size may be specified. If not specified then the default

size will be used.

 BufferedReader and BufferedWriter achieve greater efficiency through the use

of buffers. A data buffer is generally a temporarily a region in memory. BufferedWriter

doesn’t write on a file directly, rather, it stores data in a buffer and writes it onto the

file when you want it to execute a flush operation. Flushing tells the BufferedWriter to

write everything onto the output file. Use of a buffer is what makes

both BufferedReader and BufferedWriter fast and efficient.

357

BufferedReader Constructors

1. BufferedReader (Reader rd)

This constructor allows to create a buffering input stream that uses a default

size for input buffered.

2. BufferedReader (Reader rd, int size)

This constructor allows to create a buffering input stream that uses a

specified size for input buffered.

Example:

FileReader readfile = new FileReader(“Test.txt”);

BufferedReader bufread = new BufferedReader(readfile);

Above example will buffer the input from the specified file. Without buffering, each call

to read() or readLine() method could cause bytes to be read from the file, converted

into characters, and then returned. This can be very inefficient.

 A BufferedWriter writes text to a character-output stream, while buffering

characters to provide for the efficient writing of single characters, strings and arrays.

Unlike byte stream (convert data into bytes), bufferwriter writes the strings, arrays or

character data directly to a file.

Constructors:

1. BufferedWriter(Writer wout):

This allows us to create a buffered character-output stream that uses a

default sized output buffer with specified Writer object.

2. BufferedWriter(Writer wout, int sz):

This allows us to create a buffered character-output stream that uses an

output buffer of specified size with specified Writer object.

// Program to writes a data in a file using BufferedWriter and reads the content back

from the same file using BufferedReader.

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileReader;

358

import java.io.FileWriter;

import java.io.IOException;

public class buferReadWriter

{

 public static void main(String[] args)

 {

 File buffile = new File("buff.txt");

 /*Writing file using BufferedWriter*/

 FileWriter filewrite = null;

 BufferedWriter buffwrite =null;

 try {

 filewrite=new FileWriter(buffile);

 buffwrite =new BufferedWriter(filewrite);

 buffwrite.write("Babasaheb Ambedkar Open University \n");

 buffwrite.write("Gujarat Vidyapith \n");

 buffwrite.write("Dept. of Computer Science");

 buffwrite.flush();

 } catch (IOException ioe)

 {

 System.out.println(ioe);

 }

 finally {

 try {

 if(filewrite!=null){

 filewrite.close();

 }

 if(buffwrite!=null){

 buffwrite.close();

 }

 } catch (IOException ioe) {

 System.out.println(ioe);

 }

 }

359

 /*Reading file using BufferedReader*/

 FileReader fileread=null;

 BufferedReader buffRead=null;

 try {

 fileread =new FileReader(buffile);

 buffRead=new BufferedReader(fileread);

 String data=null;

 while((data=buffRead.readLine())!=null){

 System.out.println(data);

 }

 } catch (IOException ioe) {

 System.out.println(ioe);

 }finally {

 try {

 if(fileread!=null){

 fileread.close();

 }

 if(buffRead!=null){

 buffRead.close();

 }

 } catch (IOException ioe)

 {

 System.out.println(ioe);

 }

 }

 }

}

 This program creates a file named buff.txt, writes a few data in to it. After that, the

same file is read by using BufferedReader. The out put of the program is shown

below.

Output:

Babasaheb Ambedkar Open University

360

Gujarat Vidyapith

Dept. of Computer Science

4.6.3 PipedWriter and PipedReader

 PipedWriter and PipedReader classes are connected to each other to create

a communication link called pipe. PipedWriter and PipedReader class works on

character output and input stream. PipedWriter is the Sending end while

PipedReader is the receiving end. If pipe is broken, IOException will be thrown. The

pipe reader and pipe writer are connected with each other but both are processed by

two different threads.

PipedReader Constructor:

1. PipedReader()

This constructor allows us to create the piped reader object.

2. PipedReader(int pSize)

This constructor allows us to create the piped reader object with specified size

of buffer or pipe.

3. PipedReader(PipedWriter src, int pSize)

This constructor allows us to create the piped reader object with specified size

of buffer or pipe with the specified connection to piped writer instance.

PipedWriter Constructor:

1. PipedWriter()

 This constructor allows us to create the piped writer object and not connected

with piped reader.

2. PipedWriter(PipedReader pread)

This constructor allows us to create the piped writer object which is connected

to the specified piped reader instance.

import java.util.*;

import java.io.*;

public class PipeThreadRdWtr

361

{

 public static void main(String[] args) throws Exception

 {

 PipedWriter owner = new PipedWriter();

 PipedReader user = new PipedReader(owner);

 DigitOwner dit = new DigitOwner(owner);

 DigitUser du = new DigitUser(user);

 dit.start();

 du.start();

 }

}

class DigitOwner extends Thread

{

 BufferedWriter bw;

 public DigitOwner(Writer w)

 {

 this.bw = new BufferedWriter(w);

 }

 // thread continually generates random votes

 public void run() {

 try {

 Random r = new Random();

 while (true) {

 String vote = "" + Math.abs((r.nextInt() % 10));

 bw.write(vote);

 bw.newLine();

 bw.flush();

 sleep(20);

 }

 }

 catch(IOException e) {

362

 System.err.println(e);

 }

 catch(InterruptedException e) {

 System.err.println(e);

 }

 }

}

class DigitUser extends Thread

{

 BufferedReader br;

 int[] votes = new int[10];

 public DigitUser(Reader r) {

 br = new BufferedReader(r);

 }

 public void run() {

 try {

 String data;

 int count = 0;

 while ((data = br.readLine()) != null) {

 int member = Integer.parseInt(data);

 votes[member]++;

 count++;

 if (count % 100 == 0)

 {

 for (int i=0; i<votes.length; i++)

 {

 System.out.println("Member ->" + i + ": " + votes[i]);

 }

 System.out.println("****");

 }

 }

 }

 catch(IOException e) {

 System.err.println(e);

363

 }

 }

}

In this example, one thread takes off the behavior of scores for 10 members by

generating random numbers between 0 to 10. Another thread keeps track of the total

votes per members. The output of the program is shown below.

Output:

Figure-125: Output of program

 Check Your Progress 2

1) Define Filter Stream.

……………………………………………………………………………………

……………………………………………………………………………………

2) Write a code to append the new content to the end of a file using PrintWriter.

……………………………………………………………………………………

……………………………………………………………………………………

3) What is the functionality of SequenceInputStream?

……………………………………………………………………………………

……………………………………………………………………………………

4.7 BYTE STREAMS

364

There are various important classes’ falls under the umbrella of Byte Streams.

Stream class Description

InputStream This class is an abstract class that describe stream

input. This is a super class of all InputStream class.

OutputStream This class is an abstract class that describe stream

output. This is a super class of all OutputStream class.

FileInputStream This class is used for Input stream that reads from a file.

FileOutputStream This class is used for Output stream that write to a file.

FilterInputStream This class contains different sub classes

as BufferedInputStream, DataInputStream,

LineNumberInputStream and PushBackInputStream for

providing additional functionality.

FilterOutputStream This class provides different sub classes such

as BufferedOutputStream and DataOutputStream and

PrintStream to provide additional functionality.

SequenceInputStream This class is used to read data from multiple streams. It

allows us to reads data sequentially (one by one).

ByteArrayInputStream This class is cosnsists of two words: ByteArray and

InputStream. it can be used to read byte array as input

stream.It contains an internal buffer which is used

to read byte array as stream. The data is read from a

byte array.

ByteArrayOutputStream This class is used to write common data into multiple

files. The data is written into a byte array and it will be

written to multiple streams lateron. It contains a copy of

data and forwards it to multiple streams.

ObjectInputStream This class is used to read the primitive data type and

Java object from an input stream.

https://www.javatpoint.com/java-bufferedinputstream-class
https://www.javatpoint.com/java-datainputstream-class
https://www.javatpoint.com/java-bufferedoutputstream-class
https://www.javatpoint.com/java-dataoutputstream-class
https://www.javatpoint.com/object-class
https://www.javatpoint.com/java-8-stream
https://www.javatpoint.com/array-in-java
https://www.javatpoint.com/array-in-java

365

ObjectOutputStram This class is used to store the primitive data type and

Java object to an output stream. Those objects whose

class implements java.io.Serializable interface are

written to stream.

PipedInputStream Both classes can be used to read and write data

simultaneously. Both streams are connected with each

other using the connect() method of the

PipedOutputStream class.

PipedOutputStream

StringBufferInputStream This class helps in creating an Input Stream where, one

can read bytes from the string. We can only read lower 8

bits of each character present in the string. This class

has been deprecated.

PrintStream This class is used for Output Stream that contain print()

and println() method

Table-13 Classes for Byte Streams

 ByteStream contains classes that are used to read bytes from the source file

and write bytes to destination file. There are two types of Byte Stream classes: Input

and Output stream classes.

Byte Streams can be used for all types of files except Strings or text files.

4.7.1 FileInputStream and FileOutputStream

 FileInputStream class is used to read the data from file. It is used for reading

streams of raw byte. The FileInputStream class establishes the connection with the

disk file.

Constructors:

1. FileInputStream(File bytefile)

This constructor allows us to create a FileInputStream object to read a file

specified by the File object.

Example:

366

File bytefile= new File(“D:\\Test.txt”);

FileInputStream fis= new FileInputStream(bytefile);

2. FileInputStream(String filepath)

This constructor allows us to create a FileInputStream to read a file which is

accessed by the path specified in the argument of this constructor.

 Example:

FileInputStream fis= new FileInputStream(“D:\\Test.txt”);

Both the above constructors have created a FileInputStream object to create an

input stream to read a file called “Test.txt” which is located in the D drive.

FileOutputStream class is used for writing the data to a File.

Constructor:

1. FileOutputStream(File bytefile)

This constructor allows us to create a FileInputStream object to read a file

specified by the File object.

Example:

File bytefile = new File(“D:\\Test.txt”);

FileInputStream fis= new FileInputStream(bytefile);

2. FileOutputStream(String filepath)

This constructor allows us to create a FileOutputStream to write to a file which

is accessed by the path specified in the argument of this constructor.

Example:

FileOutputStream fis= new FileOutputStream(“D:\\Test.txt”);

 Both the above constructors have created a FileInputStream object to create

an input stream to read a file called “Test.txt” which is located in the D drive.

//Program to write to and read from the file

import java.io.*;

class fileInoutStream{

 public static void main(String args[])

367

 {

 FileInputStream fin;

 BufferedReader br = null;

 try

 {

 //Writing in to file

 FileOutputStream fout=new FileOutputStream("foutest.txt");

 fout.write(50);

 fout.write('V');

 fout.write('D');

 fout.close();

 //Reading from the file

 fin=new FileInputStream("foutest.txt");

 BufferedInputStream bin=new BufferedInputStream(fin);

 int i;

 while((i=bin.read())!=-1)

 {

 System.out.print((char)i);

 }

 bin.close();

 fin.close();

 }

 catch(Exception ex)

 {

 System.out.println(ex);

 }

 }

}

 In the above program first we are writing the character / byte in to the file

through FileOutputStream. After that we reads the same file by wrapping the

FileinputStream in BufferedInputStream and displays the content.

Output:

2VD

368

4.7.2 DataInputStream and DataOutputStream

 InputStream classes always reads data in the form of bytes but

DataInputStream class is used to read data in the form of primitive data types such

as char, int, float, double, Boolean, short from an input stream. This class is a filter

class used to wrap any input stream to read primitive data types out of it. It is a

subclass of FilterInputStream class which in turn is a subclass of InputStream class.

Constructor:

DataInputStream(InputStream dis)

This constructor takes an InputStream object dis as its argument to read data

out of this input stream.

Example:

FileInputStream disfis=new FileInputStream(“D://Test.txt”);

DataInputStream disread =new DataInputStream(disfis);

In the above code, we have created a DataInputStream object to read primitive data

types out of a file D:\\Test.txt, pointed by FileInputStream object disfis.

 OutputStream classes write data only in terms of bytes but

DataOutputStream class allows us to write data of primitive types such as char, int,

float, double, boolean, short to an output stream. This class is a filter class which is

used to wrap any output stream, to write primitive data to it.

Constructor:

DataOutputStream(OutputStream disout)

 This constructor takes an OutputStream object disout in the parameters to

write data to this output stream.

Example:

FileOutputStream disfos=new FileOutputStream(“D:\\Test.txt”);

DataOutputStream doswrite =new DataOutputStream(disfos);

In the above code, we have created a DataInputStream object to write data to a file

D:\\Test.txt, pointed by FileOutputStream object reference disfos.

369

import java.io.*;

public class DataInOut {

 public static void main(String[] args) throws IOException {

 //Writing to the file

 FileOutputStream datafile = new FileOutputStream("dataout.txt");

 DataOutputStream data = new DataOutputStream(datafile);

 data.write(50);

 data.write('V');

 data.write('L');

 data.write('D');

 data.flush();

 data.close();

 //Reading from the file

 InputStream inputdata = new FileInputStream("dataout.txt");

 DataInputStream datainst = new DataInputStream(inputdata);

 int count = inputdata.available();

 byte[] arydata = new byte[count];

 datainst.read(arydata);

 for (byte vd : arydata)

 {

 char ch = (char) vd;

 System.out.print("->"+ch);

 }

 }

}

 In the above program first we are writing the character / byte in to the file

through DataOutputStream. After that we reads the same file by wrapping the

FileinputStream in DataInputStream and displays the content.

Output:

->2->V->L->D

4.8 OTHER CLASSES

370

There are various other classes apart from discussed above. They are,

4.8.1 RANDOMACCESSFILE

 Java allows us to access the contents of a file in random order i.e. data items

can be read and written in any fashion. This is especially very important and helpful in

direct access applications like banking systems, airline reservation systems,

Automatic Teller Machine (ATM) etc. Random access files are similar to arrays,

where each data is accessed directly by its index number. In Java,

java.io.RandomAccessFile class enables us to perform random access file input and

output operations as opposed to sequential file I/O offered by ByteStream and

CharacterStream classes.

Constructor:

 public RandomAccessFile(String fileName, String mode) throws IOException

 This constructor allows us to create a random access file stream to read from,

and optionally to write to, a file with the specified file name. The mode argument must

either be equal to “r” or “rw”, stating either to open the file for read or for both read

and write.

 When a data file is opened for random read and write access, an internal file

pointer will be set at the beginning of the file. When we read or write data to the file,

the file pointer will move forward to the next data item. For example, when reading an

int data using readlnt(), 16 bytes are read from the file and the file pointer moves 16

bytes forward from the previous file pointer position. Similarly, when reading a double

data using readDouble (), 8 byte are read from the file pointer and the file pointer

moves 8 bytes forward from the previous file pointer position.

4.8.2 STREAMTOKENIZER

 The StreamTokenizer class is used to break an object of type Reader into

tokens based on different identifiers, numbers, quoted strings and various comment

styles. The next token will be obtained from the Reader by calling nextToken()

method. It will return the type of token. StreamTokenizer class defines four int

constants: TT EOF, TT EOL, TT NUMBER and TT WORD.

 Apart from these constant there are three instance variables named nval, sval

and ttype. The nval hold the values of numbers, sval hold the value of any words

https://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.lang.String.html#_top_
https://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.lang.String.html#_top_
https://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.io.IOException.html#_top_

371

(string) and the ttype is a public int that has just been read by the nextToken()

method.

If the token will be a word or string, ttype equals TT WORD. If the token will be a

number, ttype equals TT NUMBER. If the token will be a single character, ttype

contains its value. When an end of line condition has been encountered, ttype will

equal TT EOL. When the end of the stream has been encountered, ttype will equal

TT EOF.

Constructor:

 The constructor for java.io.StreamTokenizer which works on an InputStream

has been deprecated in favor of the constructor that works on a Reader. We can still

tokenize an InputStream by converting it to a Reader:

Reader rd = new BufferedReader(new InputStreamReader(insr));

StreamTokenizer strtoken = new StreamTokenizer(rd);

Method StreamTokenizer(InputStream) is deprecated and the Alternative method is

 StreamTokenizer(Reader).

4.8.3 FILE

 Java.io package also provides a File class that provide support for creating

and manipulation of files. Means, the File class does not specify how information is

retrieved from or stored in files rather it describes the properties of a file itself. A File

Object is used to obtain or manipulate the data associated with a disk file. It will

provide the permission, directory path and so on.

Constructor:

1. File(File superstr, String substr)

This constructor allows us to create a new File instance from a superstr

pathname and a substr pathname string.

2. File(String path)

This constructor allows us to create a new File instance by converting the

given path string into an abstract pathname.

3. File(String superstr, String substr)

372

This constructor allows us to create a new File instance from a superstr path

string and a substr path string.

4. File(URI uripath)

This constructor allows us to create a new File instance by converting the

given file URI into an abstract pathname.

File class defines many methods. For example, getName() method returns the name

of the file, getPath() method returns the path of the file, getParent() method returns

the name of the parent directory, exists() method returns true if the file exists and

false if it does not. isFile() method returns true if invoked on a file and false if invoked

on a directory. The mkdir() method allows us to create a directory, returns true on

success and false on failure. The createNewFile() method allows us to create a

new empty file, return true on success and false on failure. It is written in a try-catch

block. This is must because the createNewFile() method throws an IO exception, if

the file cannot be created because of the entire path does not exist. If we fail to catch

the exception, program will not compile.

import java.io.File;

import java.io.*;

public class Filehandling {

 public static void main(String[] args) {

 File f1 = new File("D:\\College\\BAOU\\BAOU\\Writing Book\\Program\\Book\\

 Test.txt");

 System.out.println("Folder Name is : "+f1.getName());

 System.out.println("Full Path is : "+f1.getPath());

 System.out.println("Parent of file : "+f1.getParent());

 System.out.println("Book Folder is : "+f1.exists());

 System.out.println("Book is a File : "+f1.isFile());

 System.out.println("Test.txt is writeable : "+f1.canWrite());

 System.out.println("Test.txt is readable : "+f1.canRead());

 System.out.println("Test.txt size in Bytes : "+f1.length());

 System.out.println("Absolute Location is : "+f1.toString());

373

 System.out.println("Test.txt is Hidden file : "+f1.isHidden());

 //Creating a new Directory

 File f2 = new File("D:\\College\\BAOU\\BAOU\\Writing
Book\\Program\\newDir");

 if(f2.mkdir())

 {

 System.out.println("Directory Created : Success");

 }else

 {

 System.out.println("Directory Created : Unsuccess");

 }

 //New file creation

 File f3 = new File("D:\\College\\BAOU\\BAOU\\Writing Book\\Program\\

 new.txt");

 try{

 if(f3.createNewFile())

 {

 System.out.println("File Created : Success");

 }else

 {

 System.out.println("File Created : Unsuccess");

 }

 }catch (IOException io){}

 }

}

Above example shows the basic function related to File handling using File class.

The output of the above program is as shown below:

Output:

Folder Name is : Test.txt

Full Path is : D:\College\BAOU\BAOU\Writing Book\Program\Book\Test.txt

Parent of file : D:\College\BAOU\BAOU\Writing Book\Program\Book

Book Folder is : true

374

Book is a File : true

Test.txt is writeable : true

Test.txt is readable : true

Test.txt size in Bytes : 816

Absolute Location is : D:\College\BAOU\BAOU\Writing Book\Program\Book\Test.txt

Test.txt is Hidden file : false

Directory Created : Unsuccess

File Created : Unsuccess

4.8.4 READING DATA FROM CONSOLE

There are three different techniques to read the input values from Java Console.

They are:

1. Using Java Bufferedreader Class

2. Scanner Class in Java

3. Console Class in Java

 We have already discussed the use of BufferedReader class in Character

Stream classes. So, now we will discuss the remaining two.

 Scanner Class

 This is easy and widely used technique to take input. The primary reason for

the Scanner class is to parse primitive types and strings utilizing general

expressions.

import java.util.*;

public class studentInput{

 public static void main(String []args){

 String Stuname;

 int Stuage;

 float Stuheight;

 //creating object of Scanner class

375

 Scanner input = new Scanner(System.in);

 System.out.print("Enter student name: ");

 Stuname = input.next();

 System.out.print("Enter student age: ");

 Stuage = input.nextInt();

 System.out.print("Enter student height: ");

 Stuheight = input.nextFloat();

 System.out.println("Name: " + Stuname + ", Age: "+ Stuage + ", height: "+
Stuheight);

 }

}

Output:

Enter student name: Vinod

Enter student age: 35

Enter student height: 6

Name: Vinod, Age: 35, height: 6.0

 Console Class in Java

 The java.io.Console class provides convenient methods for reading input and

writing output to the standard input (keyboard) and output streams (display) in

command-line (console) programs. The following program depicts the use of

Console class to read input data from the user and print output:

import java.io.*;

import java.util.*;

public class ConsoleReadWrite {

 public static void main(String[] args) throws IOException {

 Console console = System.console();

 if (console == null) {

 System.out.println("Console is not supported");

 System.exit(1);

 }

 String Stuname = console.readLine("What's the student name? ");

 String Stuage = console.readLine("How old are the student is? ");

376

 String Stucity = console.readLine("Where do the student lives? ");

 //console.format("%s, a %s year-old student is living in %s", Stuname, Stuage,
Stucity);

 console.printf("%s, a %s year-old student is living in %s", Stuname, Stuage,
Stucity);

 }

}

console.printf () and console.format () prints the same results with applied formats.

Output:

What's the student name? Ved

How old are the student is? 10

Where do the student lives? Gandhinagar

Ved, a 10 year-old student is living in Gandhinagar

 Check Your Progress 3

1)Write a code of ObjectInputStream and ObjectOutputStream classes to

demonstrate the working of java IO on objects.

……………………………………………………………………………………

……………………………………………………………………………………

2) Write a code to read byte array from a file using RandomAccessFile.

……………………………………………………………………………………

……………………………………………………………………………………

3) Differentiate various console based input options of Java.

……………………………………………………………………………………

……………………………………………………………………………………

4.9 LET US SUM UP

377

 I/O in Java is based on streams. A stream represents a flow of data or a

channel of communication. The package java.io contains streams-binary, character

and object to handle fundamental input and output operations in Java. The I/O

classes can be grouped as follows: All input related process is performed through

subclasses of InputStream and all output related process is performed through

subclasses of OutputStream. In this unit we have discussed various streams

combined together to perform the added functionality of standard input and stream

input. In this we have also discussed the operations of reading from a file and writing

to a file. We have also discussed the classes which performs input – output through

Pipes.

4.10 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

 Check Your Progress 1

1. We can divide the classes into two groups. They are,

Low level: In this group FileInputStream, FileOutputStream, FileReader,

FileWriter covered

High level: In this group BufferedInputStream, BufferedReader,

ObjectInputStream and their accompanying output classes are covered.

2.

 Streams: It deals with one byte at a time. It is good for binary data.

 Readers/Writers: it deals with one character at a time. It is good for text data.

 Buffered: It deals with many bytes/characters at a time. It is used always.

3. Byte streams are suggested for normal input and output.

Character streams are suggested exclusively for character data.

Basically, all data consist of bits grouped into 8-bit bytes. So, logically all

streams could be called “byte streams”. Whenever the streams which are

intended for bytes and represent characters are known as “character streams”

and rest are called “byte streams”.

 Check Your Progress 2

378

1.

Filter streams are used to manipulate data reading from an underlying stream.

The read method in a readable filter stream reads input from the underlying

stream, filters it, and then forward on the filtered data to the caller. The write

method in a writable filter stream, filters the data and then writes the data to the

underlying stream.

2.

import java.io.*;

public class FileAppend

{

 public static void main(String[] args)

 {

 try {

 PrintWriter pout = new PrintWriter(new BufferedWriter(new

FileWriter("fAppnd.txt", true))); //the true will append the new content

 pout.println("Welcome to BAOU, Ahmedabad.");

 pout.close();

 } catch (IOException ex) {

 System.out.println(ex);

 } } }

3.

This class is very useful to copy multiple source files into one destination file

with very less code.

 Check Your Progress 3

1.

String str = "Gujarat";

379

 byte[] byt = {'V', 'i', 'd', 'y', 'a', 'p', 'i', 't', 'h'};

 try {

 // create a new file with an ObjectOutputStream

 FileOutputStream out = new FileOutputStream("test.txt");

 ObjectOutputStream oout = new ObjectOutputStream(out);

 // write something in the file

 oout.writeObject(str);

 oout.writeObject(byt);

 oout.flush();

 // create an ObjectInputStream for the file we created before

ObjectInputStream ois = new ObjectInputStream(new FileInputStream("test.txt"));

 // read and print an object and cast it as string

 System.out.println("" + (String) ois.readObject());

 // read and print an object and cast it as string

 byte[] read = (byte[]) ois.readObject();

 String str1 = new String(read);

 System.out.println("" + str1);

2.

RandomAccessFile ramacc = new RandomAccessFile("Test.txt", "r");

ramacc.seek(1);

byte[] byt = new byte[5];

380

ramacc.read(byt);

ramacc.close();

System.out.println(new String(byt));

3.

I.Using Buffered Reader Class

II. Using Scanner Class

III. Using Console Class

4.11 FURTHER READING

19) Core Java for Beginners: 1 (X-Team) by Sharanam Shah, Vaishali Shah 1st

edition

20) Java Programming for Beginners by Mark Lassoff

21) Core Java Programming-A Practical Approach by Tushar B. Kute

22) Java: The Complete Reference by Schildt Herbert. Ninth Edition

23) https://www.decodejava.com/

24) https://www.javatpoint.com/

4.12 ASSIGNMENTS

14) Define Stream. Explain BufferedInputStream and BufferedOutputStream with

example.

15) Discuss the different filter classes of IO streams.

16) Explain StringTokenizer class with proper example.

17) What is Console IO? Explain Scanner class with proper example.

18) Define Random access. State its benefit with respect to file access.

	3.5.4 CARDLAYOUT
	BufferedReader and BufferedWriter achieve greater efficiency through the use of buffers. A data buffer is generally a temporarily a region in memory. BufferedWriter doesn’t write on a file directly, rather, it stores data in a buffer and writes it on...
	BufferedReader Constructors

	4.7.2 DataInputStream and DataOutputStream

