
148

Unit-1: Basic User Interface
Screen elements

Unit Structure

1.0. Learning Objectives

1.1. Introduction

1.2. Introduction to Views, Controls and Layout

1.3. TextView

1.4. EditText

1.5. AutoCompleteTextView

1.6. Spinner

1.7. Buttons

1.8. Check Boxes

1.9. Radio Groups

1.10. Pickers

1.11. Let us sum up

1.12. Check your Progress: Possible Answers

1.13. Further Reading

1.14. Activities

1

149

1.0 Learning Objective

After studying this unit you will be able to learn

 The user interface elements available within the Android Software Development

Kit (SDK).

 Uses of various user interface elements

 How to use a variety of different components and controls to build a screen

 How your application can listen for various actions performed by the user.

 How to style controls and apply themes to entire screens.

1.1 Introduction

Most Android applications inevitably need some form of user interface. In this unit,

we will discuss the user interface elements available within the Android Software

Development Kit (SDK). Some of these elements display information to the user,

whereas others gather information from the user.

You learn how to use a variety of different components and controls to build a screen

and how your application can listen for various actions performed by the user.

Finally, you learn how to style controls and apply themes to entire screens.

1.2 Introduction to Views, Controls and Layout

Before we go any further, we need to define a few terms. This gives you a better

understanding of certain capabilities provided by the Android SDK before they are

fully introduced. First, let‘s talk about the View class.

Introduction to Android Views

This class represents the basic building block for user interface components. A View

occupies a rectangular area on the screen and is responsible for drawing and event

handling. View is the base class for widgets, which are used to create interactive UI

components (buttons, text fields, etc.). The ViewGroup subclass is the base class for

150

layouts, which are invisible containers that hold other Views (or other ViewGroups)

and define their layout properties.

All of the views in a window are arranged in a single tree. You can add views either

from code or by specifying a tree of views in one or more XML layout files. There are

many specialized subclasses of views that act as controls or are capable of

displaying text, images, or other content.

Once you have created a tree of views, there are typically a few types of common

operations you may wish to perform:

Set properties: for example setting the text of a TextView. The available properties

and the methods that set them will vary among the different subclasses of views.

Note that properties that are known at build time can be set in the XML layout files.

Set focus: The framework will handle moving focus in response to user input. To

force focus to a specific view, call requestFocus().

Set up listeners: Views allow clients to set listeners that will be notified when

something interesting happens to the view. For example, all views will let you set a

listener to be notified when the view gains or loses focus. You can register such a

listener using setOnFocusChangeListener(android.view.View.OnFocusChangeListener).

Other view subclasses offer more specialized listeners. For example, a Button

exposes a listener to notify clients when the button is clicked.

Set visibility: You can hide or show views using setVisibility(int).

Introduction to Android Controls

The Android SDK contains a Java package named android.widget. When we refer to

controls, we are typically referring to a class within this package.The Android SDK

includes classes to draw most common objects, including ImageView, FrameLayout,

EditText, and Button classes. All controls are typically derived from the View class.

We cover many of these basic controls in detail.

151

Introduction to Android Layout

One special type of control found within the android.widget package is called a

layout. A layout control is still a View object, but it doesn‘t actually draw anything

specific on the screen. Instead, it is a parent container for organizing other controls

(children). Layout controls determine how and where on the screen child controls are

drawn. Each type of layout control draws its children using particular rules. For

instance, the LinearLayout control draws its child controls in a single horizontal row

or a single vertical column. Similarly, a TableLayout control displays each child

control in tabular format (in cells within specific rows and columns).

By necessity, we use some of the layout View objects within this unit to illustrate how

to use the controls previously mentioned. However, we don‘t go into the details of the

various layout types available as part of the Android SDK until the next unit. We will

lean in more details about layout in next unit.

1.3 TextView

TextView is a user interface element that displays text to the user. Following table

shows important XML Attributes of TextView control.

Attribute Description

id id is an attribute used to uniquely identify a text view

gravity The gravity attribute is an optional attribute which is used to control the

alignment of the text like left, right, center, top, bottom, center_vertical,

center_horizontal etc.

text text attribute is used to set the text in a text view.

textColor textColor attribute is used to set the text color of a text view. Color

value is in the form of ―#argb‖, ―#rgb‖, ―#rrggbb‖, or ―#aarrggbb‖.

textSize textSize attribute is used to set the size of text of a text view. We can

set the text size in sp(scale independent pixel) or dp(density pixel).

textStyle textStyle attribute is used to set the text style of a text view. The

possible text styles are bold, italic and normal.

152

background background attribute is used to set the background of a text view. We

can set a color or a drawable in the background of a text view

padding padding attribute is used to set the padding from left, right, top or

bottom.

Table-18

The following code sample shows a typical use, with an XML layout and code to

modify the contents of the text view:

 <LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent">

 <TextView

android:id="@+id/text_view_id"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="This is TextView"

android:layout_centerInParent="true"

android:textSize="35sp"

android:padding="15dp"

android:textColor="#aaa"

android:background="#fff"/>

</LinearLayout>

This code sample demonstrates how to modify the contents of the text view defined

in the previous XML layout:

 public class MainActivity extends Activity {

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 final TextView helloTextView = (TextView) findViewById(R.id.text_view_id);

153

 helloTextView.setText(R.string.user_greeting);

 }

 }

To display this TextView on the screen, all your Activity needs to do is call the

setContentView() method with the layout resource identifier in which you defined in

the preceding XML shown.

You can change the text displayed programmatically by calling the setText() method

on the TextView object. Retrieving the text is done with the getText() method. To

customize the appearance of TextView we can use Styles and Themes.

1.4 EditText

EditText is a user interface element for entering and modifying text. Following table

shows important XML Attributes of EditText control.

Attribute Description

id This is an attribute used to uniquely identify an edit text

gravity The gravity attribute is an optional attribute which is used to control

the alignment of the text like left, right, center, top, bottom,

center_vertical, center_horizontal etc.

text This attribute is used to set the text in a text view.

hint It is an attribute used to set the hint i.e. what you want user to enter in

this edit text. Whenever user start to type in edit text the hint will

automatically disappear.

lines Defines how many lines tall the input box is. If this is not set, the entry

field grows as the user enters text.

textColorHint It is an attribute used to set the color of displayed hint.

textColor This attribute is used to set the text color of a edit text. Color value is

in the form of ―#argb‖, ―#rgb‖, ―#rrggbb‖, or ―#aarrggbb‖.

textSize This attribute is used to set the size of text of a edit text. We can set

the text size in sp(scale independent pixel) or dp(density pixel).

154

textStyle This attribute is used to set the text style of a edit text. The possible

text styles are bold, italic and normal.

background This attribute is used to set the background of a edit text. We can set

a color or a drawable in the background of a edit text

padding Padding attribute is used to set the padding from left, right, top or

bottom.

Table-19

Following layout code shows a basic EditText element.

<EditText

android:id=‖@+id/txtName‖

android:layout_height=‖wrap_content‖

android:hint=‖Full Name‖

android:lines=‖4‖

android:layout_width=‖fill_parent‖ />

The EditText object is essentially an editable TextView. You can read text from it in

by using the getText() method. You can also set initial text to draw in the text entry

area using the setText() method. You can also highlight a portion of the text from

code by call to setSelection() method and a call to selectAll() method highlights the

entire text entry field.

By default, the user can perform a long press to bring up a context menu. This

provides to the user some basic copy, cut, and paste operations as well as the ability

to change the input method and add a word to the user‘s dictionary of frequently

used words. You can set the editable attribute to false, so the user cannot edit the

text in the field but can still copy text out of it using a long press.

1.5 AutoCompleteTextView

In Android, AutoCompleteTextView is a view i.e. similar to EditText, except that it

displays a list of completion suggestions automatically while the user is typing. A list

155

of suggestions is displayed in drop down menu from which user can choose an item

which actually replace the content of EditBox with that.

It is a subclass of EditText class so we can inherit all the properties of EditText in a

AutoCompleteTextView.

Following layout code shows a basic AutoCompleteTextView element.

<AutoCompleteTextView

android:id="@+id/ac"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text=" Auto Suggestions EditText"/>

To display the Array content in an AutoCompleteTextView we need to implement

Adapter. In AutoCompleteTextView we mainly display text values so we use Array

Adapter for that. ArrayAdapter is used when we need list of single type of items

which is backed by an Array. For example, list of phone contacts, countries or

names.

ArrayAdapter(Context context, int resource, int textViewResourceId, T[] objects)

AutoCompleteTextView ac = (AutoCompleteTextView) findViewById(R.id.ac);

Following code retrieve the value from a AutoCompleteTextView in Java class.

String v = ac.getText().toString();

Check your progress-1

a) Which class represents the basic building block for user interface components?

(A) View (B) ViewGroup (C) TextView (D) EditText

b) Which subclass is the base class for layouts?

(A) View (B) ViewGroup (C) TextView (D) EditText

c) You can add views from __________

(A) Code (B) XML Layout file (C) Either (A) or (B) (D) Neither (A) nor (B)

156

d) __________ is a user interface element that displays text to the user

 (A) Label (B) EditText (C) TextBox (D) TextView

e) ___________is a user interface element for entering and modifying text.

 (A) Label (B) EditText (C) TextBox (D) TextView

f) AutoCompleteTextView is a view i.e. similar to ________except that it displays a

list of completion suggestions automatically while the user is typing.

1.6 Spinner

In Android, Spinner provides a quick way to select one value from a set of values. It

is similar to dropdown list in other programming language. In a default state, a

spinner shows its currently selected value. It provides an easy way to select a value

from a known set. Following table shows important XML Attributes of spinner control.

Attribute Description

dropDownHorizontalOffset Amount of pixels by which the drop down should be

offset horizontally.

dropDownSelector List selector to use for spinnerMode="dropdown"

display.

May be a reference to another resource, in the form

"@[+][package:]type/name" or a theme attribute in the

form "?[package:]type/name".

May be a color value, in the form of "#rgb", "#argb",

"#rrggbb", or "#aarrggbb".

dropDownVerticalOffset Amount of pixels by which the drop down should be

offset vertically.

dropDownWidth Width of the dropdown in spinnerMode="dropdown".

gravity Gravity setting for positioning the currently selected

item.

popupBackground Background drawable to use for the dropdown in

spinnerMode="dropdown".

prompt The prompt to display when the spinner's dialog is

shown.

spinnerMode Display mode for spinner options. Must be one of the

following constant values.

Constant Value Description

https://developer.android.com/reference/android/widget/Spinner.html#attr_android:dropDownSelector
https://developer.android.com/reference/android/widget/Spinner.html#attr_android:dropDownVerticalOffset
https://developer.android.com/reference/android/widget/Spinner.html#attr_android:dropDownWidth
https://developer.android.com/reference/android/widget/Spinner.html#attr_android:gravity
https://developer.android.com/reference/android/widget/Spinner.html#attr_android:popupBackground
https://developer.android.com/reference/android/widget/Spinner.html#attr_android:prompt
https://developer.android.com/reference/android/widget/Spinner.html#attr_android:spinnerMode

157

dialog 0 Spinner options will be presented to

the user as a dialog window.

dropdown 1 Spinner options will be presented to

the user as an inline dropdown

anchored to the spinner widget itself.

Table-20

As with the auto-complete method, the possible choices for a spinner can come from

an Adapter. You can also set the available choices in the layout definition by using

the entries attribute with an array resource. Following is an XML layout for showing

spinner

<Spinner

android:id=‖@+id/Spinner01‖

android:layout_width=‖wrap_content‖

android:layout_height=‖wrap_content‖

android:entries=‖@array/colors‖

android:prompt=‖@string/spin_prompt‖ />

This places a Spinner control on the screen. When the user selects it, a pop-up

shows the prompt text followed by a list of the possible choices. This list allows only

a single item to be selected at a time, and when one is selected, the pop-up goes

away.

First, the entries attribute is set to the values that shows by assigning it to an array

resource, referred to here as @array/colors.

Populate the Spinner with User Choices

The choices you provide for the spinner can come from any source, but must be

provided through a SpinnerAdapter, such as an ArrayAdapter if the choices are

available in an array or a CursorAdapter if the choices are available from a database

query.

For instance, if the available choices for your spinner are pre-determined, you can

provide them with a string array defined in a string resource file:

158

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="planets_array">
 <item>Mercury</item>
 <item>Venus</item>
 <item>Earth</item>
 <item>Mars</item>
 <item>Jupiter</item>
 <item>Saturn</item>
 <item>Uranus</item>
 <item>Neptune</item>
 </string-array>
</resources>

With an array such as this one, you can use the following code in

your Activity or Fragment to supply the spinner with the array using an instance

of ArrayAdapter:

Spinner spinner = (Spinner) findViewById(R.id.spinner);

// Create an ArrayAdapter using the string array and a default spinner layout

ArrayAdapter<CharSequence> adapter = ArrayAdapter.createFromResource(this,

R.array.planets_array, android.R.layout.simple_spinner_item);

// Specify the layout to use when the list of choices appears

adapter.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_ite

m);

// Apply the adapter to the spinner

spinner.setAdapter(adapter);

The createFromResource() method allows you to create an ArrayAdapter from the

string array. The third argument for this method is a layout resource that defines how

the selected choice appears in the spinner control. The simple_spinner_item layout

is provided by the platform and is the default layout you should use unless you'd like

to define your own layout for the spinner's appearance.

https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Fragment.html
https://developer.android.com/reference/android/widget/ArrayAdapter.html

159

You should then call setDropDownViewResource(int) to specify the layout the

adapter should use to display the list of spinner choices.

Call setAdapter() to apply the adapter to your Spinner.

Responding to User Selections

When the user selects an item from the drop-down, the Spinner object receives an

on-item-selected event.

To define the selection event handler for a spinner, implement the

AdapterView.OnItemSelectedListener interface and the corresponding

onItemSelected() callback method. For example, here's an implementation of the

interface in an Activity:

public class SpinnerActivity extends Activity implements OnItemSelectedListener {
 ...

 public void onItemSelected(AdapterView<?> parent, View view,
 int pos, long id) {
 // An item was selected. You can retrieve the selected item using
 // parent.getItemAtPosition(pos)
 }

 public void onNothingSelected(AdapterView<?> parent) {
 // Another interface callback
 }
}

The AdapterView.OnItemSelectedListener requires the onItemSelected() and

onNothingSelected() callback methods.

Then you need to specify the interface implementation by calling

setOnItemSelectedListener():

Spinner spinner = (Spinner) findViewById(R.id.spinner);

spinner.setOnItemSelectedListener(this);

160

If you implement the AdapterView.OnItemSelectedListener interface with your

Activity or Fragment (such as in the example above), you can pass this as the

interface instance.

1.7 Button

A user interface element the user can tap or click to perform an action. To display a

button in an activity, add a button to the activity's layout XML file:

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/button_text"

 android:drawableLeft="@drawable/button_icon"

 ... />

To specify an action when the button is pressed, set a click listener on the button

object in the corresponding activity code:

Figure-61

 public class MyActivity extends Activity {

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.content_layout_id);

 final Button button = findViewById(R.id.button_id);

 button.setOnClickListener(new View.OnClickListener() {

 public void onClick(View v) {

 // Code here executes on main thread after user presses button

 }

 });

 }

 }

161

The above snippet creates an instance of View.OnClickListener and wires the

listener to the button using setOnClickListener(View.OnClickListener). As a result,

the system executes the code you write in onClick(View) after the user presses the

button.

Every button is styled using the system's default button background, which is often

different from one version of the platform to another. If you are not satisfied with the

default button style, you can customize it.

1.8 Checkbox

A checkbox is a specific type of two-states button that can be either checked or

unchecked.

Figure-62

To create each checkbox option, create a CheckBox in your layout. Because a set of

checkbox options allows the user to select multiple items, each checkbox is

managed separately and you must register a click listener for each one.

Responding to Click Events

When the user selects a checkbox, the CheckBox object receives an on-click event.

To define the click event handler for a checkbox, add the android:onClick attribute to

the <CheckBox> element in your XML layout. The value for this attribute must be the

name of the method you want to call in response to a click event. The Activity

hosting the layout must then implement the corresponding method.

For example, here are a couple CheckBox objects in a list:

162

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent">

 <CheckBox android:id="@+id/checkbox_meat"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/meat"

 android:onClick="onCheckboxClicked"/>

 <CheckBox android:id="@+id/checkbox_cheese"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/cheese"

 android:onClick="onCheckboxClicked"/>

</LinearLayout>

Within the Activity that hosts this layout, the following method handles the click event

for both checkboxes:

public void onCheckboxClicked(View view) {
 // Is the view now checked?
 boolean checked = ((CheckBox) view).isChecked();

 // Check which checkbox was clicked
 switch(view.getId()) {
 case R.id.checkbox_meat:
 if (checked)
 // Put some meat on the sandwich
 else
 // Remove the meat
 break;
 case R.id.checkbox_cheese:
 if (checked)
 // Cheese me
 else
 // I'm lactose intolerant
 break;
 // TODO: Veggie sandwich

https://developer.android.com/reference/android/app/Activity.html

163

 }
}

1.9 Radio Button

Radio buttons allow the user to select one option from a set. You should use radio

buttons for optional sets that are mutually exclusive if you think that the user needs

to see all available options side-by-side. If it's not necessary to show all options side-

by-side, use a spinner instead.

Figure-63

To create each radio button option, create a RadioButton in your layout. However,

because radio buttons are mutually exclusive, you must group them together inside a

RadioGroup. By grouping them together, the system ensures that only one radio

button can be selected at a time.

Responding to Click Events

When the user selects one of the radio buttons, the corresponding RadioButton

object receives an on-click event.

To define the click event handler for a button, add the android:onClick attribute to the

<RadioButton> element in your XML layout. The value for this attribute must be the

name of the method you want to call in response to a click event. The Activity

hosting the layout must then implement the corresponding method.

For example, here are a couple RadioButton objects:

<?xml version="1.0" encoding="utf-8"?>

<RadioGroup xmlns:android="http://schemas.android.com/apk/res/android"

164

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:orientation="vertical">

 <RadioButton android:id="@+id/radio_pirates"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/pirates"

 android:onClick="onRadioButtonClicked"/>

 <RadioButton android:id="@+id/radio_ninjas"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/ninjas"

 android:onClick="onRadioButtonClicked"/>

</RadioGroup>

Within the Activity that hosts this layout, the following method handles the click event

for both radio buttons:

public void onRadioButtonClicked(View view) {

 // Is the button now checked?

 boolean checked = ((RadioButton) view).isChecked();

 // Check which radio button was clicked

 switch(view.getId()) {

 case R.id.radio_pirates:

 if (checked)

 // Pirates are the best

 break;

 case R.id.radio_ninjas:

 if (checked)

 // Ninjas rule

 break;

 }

}

165

1.10 Pickers

Android provides controls for the user to pick a time or pick a date as ready-to-use

dialogs. Each picker provides controls for selecting each part of the time (hour,

minute, AM/PM) or date (month, day, year). Using these pickers helps ensure that

your users can pick a time or date that is valid, formatted correctly, and adjusted to

the user's locale.

Figure-64

It is recommended that you use DialogFragment to host each time or date picker.

The DialogFragment manages the dialog lifecycle for you and allows you to display

the pickers in different layout configurations, such as in a basic dialog on handsets or

as an embedded part of the layout on large screens.

Creating a Time Picker

To display a TimePickerDialog using DialogFragment, you need to define a fragment

class that extends DialogFragment and return a TimePickerDialog from the

fragment's onCreateDialog() method.

Extending DialogFragment for a time picker

To define a DialogFragment for a TimePickerDialog, you must:

 Define the onCreateDialog() method to return an instance of TimePickerDialog

 Implement the TimePickerDialog.OnTimeSetListener interface to receive a

callback when the user sets the time.

166

Here's an example:

public static class TimePickerFragment extends DialogFragment

 implements TimePickerDialog.OnTimeSetListener {

 @Override

 public Dialog onCreateDialog(Bundle savedInstanceState) {

 // Use the current time as the default values for the picker

 final Calendar c = Calendar.getInstance();

 int hour = c.get(Calendar.HOUR_OF_DAY);

 int minute = c.get(Calendar.MINUTE);

 // Create a new instance of TimePickerDialog and return it

 return new TimePickerDialog(getActivity(), this, hour, minute,

 DateFormat.is24HourFormat(getActivity()));

 }

 public void onTimeSet(TimePicker view, int hourOfDay, int minute) {

 // Do something with the time chosen by the user

 }

}

Showing the time picker

Once you've defined a DialogFragment like the one shown above, you can display

the time picker by creating an instance of the DialogFragment and calling show().

For example, here's a button that, when clicked, calls a method to show the dialog:

<Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

167

 android:text="@string/pick_time"

 android:onClick="showTimePickerDialog" />

When the user clicks this button, the system calls the following method:

public void showTimePickerDialog(View v) {

 DialogFragment newFragment = new TimePickerFragment();

 newFragment.show(getSupportFragmentManager(), "timePicker");

}

This method calls show() on a new instance of the DialogFragment defined above.

The show() method requires an instance of FragmentManager and a unique tag

name for the fragment.

Creating a Date Picker

Creating a DatePickerDialog is just like creating a TimePickerDialog. The only

difference is the dialog you create for the fragment.

To display a DatePickerDialog using DialogFragment, you need to define a fragment

class that extends DialogFragment and return a DatePickerDialog from the

fragment's onCreateDialog() method.

Extending DialogFragment for a date picker

To define a DialogFragment for a DatePickerDialog, you must:

 Define the onCreateDialog() method to return an instance of DatePickerDialog

 Implement the DatePickerDialog.OnDateSetListener interface to receive a

callback when the user sets the date.

Here's an example:

168

public static class DatePickerFragment extends DialogFragment

 implements DatePickerDialog.OnDateSetListener {

 @Override

 public Dialog onCreateDialog(Bundle savedInstanceState) {

 // Use the current date as the default date in the picker

 final Calendar c = Calendar.getInstance();

 int year = c.get(Calendar.YEAR);

 int month = c.get(Calendar.MONTH);

 int day = c.get(Calendar.DAY_OF_MONTH);

 // Create a new instance of DatePickerDialog and return it

 return new DatePickerDialog(getActivity(), this, year, month, day);

 }

 public void onDateSet(DatePicker view, int year, int month, int day) {

 // Do something with the date chosen by the user

 }

}

Showing the date picker

Once you've defined a DialogFragment like the one shown above, you can display

the date picker by creating an instance of the DialogFragment and calling show().

For example, here's a button that, when clicked, calls a method to show the dialog:

<Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/pick_date"

 android:onClick="showDatePickerDialog" />

When the user clicks this button, the system calls the following method:

169

public void showDatePickerDialog(View v) {

 DialogFragment newFragment = new DatePickerFragment();

 newFragment.show(getSupportFragmentManager(), "datePicker");

}

This method calls show() on a new instance of the DialogFragment defined above.

The show() method requires an instance of Fragment Manager and a unique tag

name for the fragment.

Check your progress-2

a) __________ provides a quick way to select one value from a set of values from

drop down list?

(A) Button (B) Checkbox (C) EditText (D) Spinner

b) When the user selects an item from the drop-down, the Spinner object receives

an ___________ event.

c) When the user selects a checkbox, the Checkbox object receives an on-click

event. (True/False)

d) Android provides controls for the user to pick a ______as ready-to-use dialogs.

(A) Date (B) Time (C) Date or Time (D) None of these

e) Radio buttons allow the user to select many options from a set. (True/False)

f) Every button is styled using the system's default button background, which is

often different from one version of the platform to another. (True/False)

1.11 Let us sum up

In this unit you have learned about user interface elements available within the

Android Software Development Kit (SDK). We have discussed use of various user

interface elements and use of different components and controls to build a screen,

this unit also explains about how application can listen for various actions performed

by the user and how to apply style controls and themes to entire screens.

170

1.12 Check your Progress: Possible Answers

1-a) (A) View 1-b) (B) View Group 1-c) (C) Either (A) or (B)

1-d) (D) TextView 1-e) (B) EditText 1-f) (B) EditText

2-a) (D) Spinner 2-b) on-item-selected 2-c) True

2-d) (C) Date or Time 2-e) False 2-f) True

1.13 Further Reading

 https://developer.android.com/reference/android/widget/TextView

 https://developer.android.com/reference/android/widget/EditText

 https://developer.android.com/reference/android/widget/Button

 https://developer.android.com/reference/android/widget/CheckBox

 https://developer.android.com/reference/android/widget/Spinner

1.14 Assignment

 Write short note on EditText

 Explain the use of TextView, EditText, Button, Checkbox, Spinner, Radio Button.

 What is difference between checkbox and radio button

1.15 Activity

 Write an application to demonstrate use of user interface element you have

learned in this unit.

