

23

UNIT 2: LANGUAGE FEATURES

Unit Structure

2.0 Learning Objectives

2.1 Introduction

2.2 Static Keyword

2.3 Using Abstract Classes

2.4 Interfaces

2.5 Simple Type Wrappers

2.6 Converting Numbers to and from Strings

2.7 Packages

2.8 Access Protection

2.9 Let Us Sum Up

2.10 Suggested Answer for Check Your Progress

2.11 Glossary

2.12 Assignment

2.13 Activities

2.14 Case Study

2.15 Further Readings

2.0 Learning Objectives

After learning this unit, you will be able to:

 Static Keyword

 Abstract Classes, Interfaces

 Simple type Wrappers

 Converting Numbers to and from Strings

 Packages

24

Object,

Classes and

Features

2.1 Introduction

The development of Java has been a compilation of the best points of

various programming languages such as C and C++. Java therefore utilizes

algorithms and methodologies that are already proven. The Java environment

automatically tackles tasks which are prone to errors such as pointers and memory

management rather than the programmer taking the initiative.

Since Java is primarily a derivative of C++ that most programmers are

conversant with, it implies that Java has a familiar feel rendering it easy to use.

The Java language supports many high-performance features such as

multithreading, just-in-time compiling and native code usage.

25

2.2 Static Keyword

When an object is created or, primitive type variable or method is called, the

memory for that object, variable or method is set aside.

The different objects, variables and methods occupy different areas of

memory when created/called. In some cases, we would like to have multiple

objects, variables or methods which occupy the same area of memory (in effect

just having the one instance of that variable or method). The above can be

achieved by using the static keyword; it is possible to have static methods and

variables.

In Java, global variables are not allowed. In order to do the same, the

instance variable in the class can be declared static. The effect of doing this is that

when we create multiple objects of that class, every object shares the same

instance variable that was declared to be static.

To make an instance variable static, we simply precede the declaration with

the static keyword:

public static intInstanceVariable = 0

Language

Features

26

Object,

Classes and

Features

In effect, what we are really doing is saying that this instance variable, no

matter how many objects are created should always reside in the same memory

location regardless of the object. This then stimulates a ‘global variable’ of sorts.

We usually make a variable declared to be final, static as well since it makes

sense to only have the one instance of a constant. The static instance variables are

also called as class variables.

Outside of the class in which they are defined, static methods and variables

can be used independently of any object. In order to do so, you only need to

specify the name of the class followed by the dot operator.

Check your progress 1

1. Explain how to make an instance variable static.

2. What are static instance variables also called as?

...

...

...

...

...

...

...

...

...

...

...

...

...

...

27

2.3 Using Abstract Classes

There are often situations where you want to determine a superclass, which

without providing a complete implementation of every method declares the

structure of an abstraction. That is, many a times you’ll want to create a superclass

that only defines a generalized form that will be shared by all of its subclasses,

leaving it to each subclass to fill in the details.

The abstract keyword can be used with:

1. A class

2. A method

Abstract Method

In a method declaration, abstract indicates that the implementation will be in

subclass. Since these methods do not have an implementation specified in the

superclass they are sometimes cited as subclasser responsibility. Hence, a subclass

cannot use the version defined in the superclass, it must override them. To declare

an abstract method, use this general form:

abstract type name (parameter-list);

No method body is present as specified above.

Abstract Class:

 A class that is declared abstract is defined as an abstract class. The class

need not necessarily include abstract methods and can be subclassed. Abstract

classes cannot be instantiated.

Language

Features

28

Object,

Classes and

Features

 In order to declare a class as abstract, you have to use the abstract keyword

before the class keyword at the beginning of the class declaration. There can be no

objects of the abstract class, that is, an abstract class cannot be directly

instantiated with the new operator.

 Any derived class that does not implement all abstract methods of its

superclass must be declared abstract. Let us take an Example: to understand this

concept in more detail.

 In the given program, the class Figure is declared as abstract because we don’t

want objects of this class to be created. Instead, this class should be subclassed.

Notice that the method area () is also abstract because we cannot define it in the

Figure class. It is defined in the subclass –Rect

abstract class Figure

{

protected double dim1, dim2

figure (double dim1, double dim2)

{

this.dim1 =dim1

this.dim2 =dim2

}

abstract double area () //abstract method

}

classRect extends Figure

{

Rect (double l, double d)

{

super (l, d)

}

29

double area ()

{

return dim1 * dim2;

}

}

public class AbstractDemo

{

public static void main (String args [])

{

Rect r = new rect (15.2, 25.5)

System.out.println (“The area=” + r.area ())

}

}

Check your progress 2

1. Where is the abstract keyword used?

2. Write the general form of abstract method.

...

...

...

...

...

...

...

...

...

Language

Features

30

Object,

Classes and

Features

2.4 Interfaces

“A collection of abstract methods is an interface. Thus, be inheriting the

abstract methods of an interface a class implements an interface. “

“An interface is not a class. They are two different concepts but writing an

interface is similar to a class. A class describes the attributes and behaviors of an

object. An interface contains behaviors that a class implements.”

“Every method of the interface is defined in the class unless the class

implementing the interface is abstract.”

An interface is similar to a class in the following ways:

 The interface contains various methods.

 The name of the interface matches the name of the file and it is written with

a .java extension.

 The bytecode of an interface appears in a .class file.

 An interface appears in packages and the bytecode file it corresponds to

must appear in a directory structure matching its name.

However, an interface is different from a class in several ways, including:

 You cannot instantiate an interface.

 Constructors do not constitute an interface.

 All of the methods in an interface are abstract.

 An interface can only contain fields that are declared both static and final

and it cannot contain instance fields.

31

 An interface is not extended by a class; it is implemented by a class.

 An interface can extend multiple interfaces.

Declaring Interfaces:

 The interface keyword is used to declare an interface.

 Encapsulation is defined as a barrier protecting and preventing the code

and data from being randomly accessed by other code outside the class. The

access is tightly controlled by an interface.

 The main benefit of encapsulation is the ability to modify our implemented

code without breaking the code of others who use our code. With this feature

Encapsulation gives maintainability, flexibility and extensibility to our code.

Example:

Let us look at an Example: that depicts encapsulation:

/* File name : NameOfInterface.java */

import java.lang.*

//Any number of import statements

public interface NameOfInterface

{

 //Any number of final, static fields

 //Any number of abstract method declarations\

}

Interfaces have the following properties:

 While declaring an interface you do not need to use the abstract keyword since

the interface is implicitly abstract.

 The abstract keyword is not needed as each method in an interface is

implicitly abstract.

 Methods in an interface are implicitly public.

Language

Features

32

Object,

Classes and

Features

Implementing Interfaces:

 The process of a class implementing an interface can be seen as the class

signing a contract, complying to carry out certain behaviors of the interface. In

case a class fails to carry out these behaviors, the class must declare itself abstract.

 In a class the implements keyword is used to implement the interface. The

implements keyword appears in the class declaration following the extends

portion of the declaration.

“When you define overriding methods in interfaces, the following rules are to be

followed:

 Checked exceptions should not be declared on implementation methods other

than the ones declared by the interface method or subclasses of those declared

by the interface method.

 When overriding methods, you must maintain the signature of the interface

method and also the same return type or subtype.

 Interface methods do not have to be implanted if in case an implementation

class itself is abstract.

 While implementing interfaces, there are several rules:

o A class can implement more than one interface at a time.

o A class can extend only one class but implement many interfaces.

o An interface itself can extend another interface. An interface cannot

extend another interface.”

Extending Interfaces:

 Just as a class can extend another class, an interface can extend another

interface as well. The extends keyword is used to extend an interface and the child

interface inherits the methods of the parent interface.

“The following Sports interface is extended by Hockey and Football interfaces.

//Filename: Sports.java

public interface Sports

33

{

 public void setHomeTeam(String name)

 public void setVisitingTeam(String name)

}

//Filename: Football.java

public interface Football extends Sports

{

 public void homeTeamScored(int points)

 public void visitingTeamScored(int points)

 public void endOfQuarter(int quarter)

}

//Filename: Hockey.java

public interface Hockey extends Sports

{

 public void homeGoalScored()

 public void visitingGoalScored()

 public void endOfPeriod(int period)

 public void overtimePeriod(intot)

}

 The Hockey interface has four methods but it inherits two from Sports;

thus, a class that implements Hockey needs to implement all six methods.

Similarly, a class that implements Football needs to define the three methods from

Football and the two methods from Sports.”

Language

Features

34

Object,

Classes and

Features

Check your progress 3

1. Explain in what ways is an interface similar to a class.

2. Write the rules for implementing interfaces.

...

...

...

...

...

...

...

...

2.5 Simple type Wrappers

Java uses simple types, such as int and char, for performance reasons. These

data types are passed by value to methods and cannot be passed directly by

reference, hence not making them a part of the object hierarchy. Also, there is no

way for two methods to refer to the same instance of an int. At times, you’ll need

to create an object representation for one of these simple types. To address this

need, Java provides classes that correspond to each of the simple types.

These classes are commonly referred to as type wrappers since they

encapsulate the simple types in a class.

Number:

“A superclass is defined by the abstract class Number that implements the

classes that wrap the numeric type’s byte, short, int, long, float and double.

Number possesses abstract methods that return the value of the object in each of

the different number formats.” That is, doubleValue () returns the value as a

double, floatValue () returns the value as a float and so on. These methods are

shown here:

35

bytebyteValue()

doubledoubleValue()

floatfloatValue()

intintValue()

longlongValue()

shortshortValue()

The values returned by these methods can be rounded. Number wrapper

class has six concrete subclasses that hold explicit values of each numeric type:

Double, Float, Byte, Short, Integer and Long.

Double and Float:

 “Double and Float are wrappers for floating-point values of type double

and float respectively. The constructors of float are given below:

Float (double num)

Float (float num)

Float (String str) throws NumberFormatException

The Float objects can be constructed with values of type float or double. They can

also be constructed from the string representation of a floating-point number.

Whereas, the constructors for Double are shown below:

Double (double num)

Double (String str) throws NumberFormatException

Double objects can be constructed with a double value or a string containing a

floating-point value.”

The given Example: creates two Double objects, one by using a double value and

the other by passing a string that can be parsed as a double.

classDoubleDemo

{

public static void main (String args [])

{

Language

Features

36

Object,

Classes and

Features

double d1 = new Double (3.14159);

double d2=new Double (“314159E-5”)

System.out.println (d1 + “= “ + d2 + “ -> “ + c1.equals(d2))

}

}

The output of this program is given below:

3.14159 = 3.14159 ->true

 As shown in the output, both constructors created identical Double

instances as shown by the equals () method returning true.

Byte, Short, Integer and Long:

 The Byte, Short, Integer and Long classes are wrappers for byte, short, int

and long integer types respectively. Their constructors are shown here:

Byte (byte num)

Byte (String str) throws NumberFormatException

Short(short num)

Short(String str) throws NumberFormatException

Integer (intnum)

Integer (String str) throws NumberFormatException

Long(long num)

Long (String str) throws NumberFormatException

 These objects can be constructed from numeric values or from strings that

contain valid whole number values.

Character:

Character is a simple wrapper around a char. The constructor for Character is

Character (char ch)

 Here, ch specifies the character that will be wrapped by the character

37

object being created.To obtain the char value contained in a Character object, call

charValue(), shown below:

charcharValue()

 The above statement returns a character. Character includes several static

methods that categorize characters and alter their case. The given Example:

demonstrates several of these methods.

public class IsDemo {

 public static void main(String[] args) {

 char a[] = {'a','b','5','?','A',' '}

 for(int i=0;i<a.length;i++){

 if(Character.isDigit(a[i]))

 System.out.println(a[i] + "is a digit ")

 if(Character.isLetter(a[i]))

 System.out.println(a[i] + "is a letter ")

 if(Character.isWhitespace(a[i]))

 System.out.println(a[i] + "is a White Space ")

 if(Character.isLowerCase(a[i]))

 System.out.println(a[i] + "is a lower case ")

 if(Character.isLowerCase(a[i]))

 System.out.println(a[i] + "is a upper case ")

 }

 }

}

Boolean:

 Boolean is a very thin wrapper around boolean values, which is useful

mostly when you want to pass a boolean variable by reference. It contains the

constants TRUE and FALSE which define true and false Boolean objects.

Boolean also defines the TYPE field, which is the Class object for boolean.

Boolean defines these constructors:

Language

Features

38

Object,

Classes and

Features

Boolean (booleanboolValue)

Boolean (String boolString)

 In the fist version, boolValue must be either true or false. In the second

version, if boolString contains the string “true” (upper or lowercase), then the new

Boolean object will be true. Otherwise, it will be false.

VOID

 The Void class has one field, TYPE which holds a reference to the Class

object for type void. You do not create instances of this class

Check your progress 4

1. Write a note on abstract class number.

2. Explain Boolean wrapper.

...

...

...

...

...

...

...

...

...

...

...

...

...

...

39

2.6 Converting Numbers to and from Strings

Java provides an easy way to convert numbers into string. The Byte, Short,

Integer and Long classes provide the parseByte(), parseShort(), parseInt() and

parseLong() methods, respectively. These methods return the byte, short, int or

long equivalent of the numeric string with which they are called.

The given below program demonstrates the use of parseInt(). It finds the

sum of a list of integers entered by the user. It reads the integers using readLine ()

and uses parseInt() to convert these strings into their int equivalents.

/*Program to convert an integer into binary, hexadecimal and octal */

Class StringConversions

{

public static void main (String args[])

{

intnum=19648

System.out.println (num + “ in binary” + Integer.toBinaryString(num))

System.out.println (num + “in octal” + Integer.toOctalString (num))

System.out.println (num + “in hexadecimal” + Integer.toHexString (num))

}

}

The output of the above program is as follows:

19648 in binary: 100110011000000

19648 in octal: 46300

19648 in hexadecimal: 4cc0.

Language

Features

40

Object,

Classes and

Features

Check your progress 5

1. Explain how you can convert numbers into string.

2. Write a program to demonstrate the use of parseInt ().

...

...

...

...

...

...

...

...

...

...

...

...

2.7 Packages

Java uses packages to avoid naming conflicts, to ease the searching and

usage of interfaces, classes, annotations and enumerations and to control access.

 Packages are a collection or group of related types of (classes, interfaces,

enumerations and annotations) providing access protection and name space

management.

Some of the existing packages in Java are:

 java.lang - bundles the fundamental classes

 java.io - classes for input , output functions are bundled in this package

41

 Programmers can bundle up a group of classes/interfaces in order to define

their own packages. It is a good practice to group related classes implemented by

you so that a programmer can easily determine that the classes, interfaces,

enumerations, annotations are related.

 There are to be no conflicts with names in various other packages since a

package creates a new namespace. With the help of packages, providing access

control and locating related classes can be done with ease.

Creating a package:

 You have to select a name for the package and put a package statement

with that very name at the top of every source file that contains the classes,

interfaces, enumerations and annotation types that you want to include in the

package when you are creating it.

 The first line in the source file must be the package statement. Each source

file can have only one package statement which shall apply to all types in the file.

 The class, interfaces, enumerations and annotation types are put into an

unnamed package if a package statement is not used.

Example:

Let us look at an Example: that creates a package called animals. It is a common

practice to use lowercased names of packages to avoid any conflicts with the

names of classes, interfaces.

Put an interface in the package animals:

/* File name : Animal.java */

package animals

interface Animal {

 public void eat()

 public void travel()

}

Now put an implementation in the same package animals:

Language

Features

42

Object,

Classes and

Features

package animals;

/* File name : MammalInt.java */

public class MammalInt implements Animal{

 public void eat(){

System.out.println("Mammal eats")

 }

 public void travel(){

System.out.println("Mammal travels")

 }

 public intnoOfLegs(){

 return 0

 }

 public static void main(String args[]){

MammalInt m = new MammalInt()

m.eat()

 m.travel()

 }

}

The import Keyword:

 If a class wants to use another class in the same package, the package

name does not need to be used. Classes in the same package find each other

without any special syntax.

43

Example:

 Here a class named Boss is added to the payroll package that already

contains Employee. The Boss can then refer to the Employee class without using

the payroll prefix, as demonstrated by the following Boss class.

package payroll;

public class Boss

{

public void payEmployee(Employee e)

{

e.mailCheck()

}

}

 The package can be imported using the import keyword and the wild card (*)

character. For Example:,

import payroll.*

 The class itself can be imported using the import keyword. For Example:

import payroll.Employee;

Note: A class file can contain any number of import statements. The import

statements must appear after the package statement and before the class

declaration.

The Directory Structure of Packages:

When a class is placed in a package, the following results are concluded:

 As stated in the previous section, the name of the package becomes a part of

that of the classes’ name.

 The name of the package must match the directory structure where the

corresponding bytecode resides.

Language

Features

44

Object,

Classes and

Features

Check your progress 6

1. Name the existing packages in Java.

2. What are the results when a class is placed in a package?.

...

...

...

...

...

...

...

...

...

...

...

...

2.8 Access Protection

Packages add another dimension to access control, they act as containers for

classes, other subordinate packages, data and code. The class is Java’s smallest

unit of abstraction, due to the interplay between classes and packages, Java

addresses four categories of visibility for class members, which are mentioned

below:

 Subclasses in the same package.

 Non-subclasses in the same package.

 Subclasses in different packages.

 Classes that are neither in the same package nor subclasses.

45

 Table 6.1: Class Member Access

 The three access specifies, private, public and protected, provide a variety

of ways to produce the many levels of access required by these categories.

 Anything declared public can be accessed from anywhere, whereas

anything declared private cannot be seen outside of its class. When a member

does not have an explicit access specification, it is visible to subclasses as well as

to other classes in the same package, which is the default access.

 An element is declared protected if you want to allow an element to be

seen outside your current package but only to classes that subclass your class

directly.

 Table 6.1 is applicable only to members of classes. A class has only two

possible access levels: default and public.

Let us consider an Example: to illustrate the above concepts:

packagepackageA;

public class Base {

public String publicStr = "publicString"

protected String protectedStr = "protectedString"

 String defaultStr = "defaultString"

private String privateStr = "privateString"

Language

Features

46

Object,

Classes and

Features

public void print() {

System.out.println("packageA.Base has access to")

System.out.println(" " + publicStr)

System.out.println(" " + protectedStr)

System.out.println(" " + defaultStr)

System.out.println(" " + privateStr)

 Base b = new Base(); // -- other Base instance

System.out.println(" b." + b.publicStr)

System.out.println(" b." + b.protectedStr)

System.out.println(" b." + b.defaultStr)

System.out.println(" b." + b.privateStr)

 }

}

--

packagepackageB

importpackageA.Base

public class SubB extends Base {

public void print() {

System.out.println("packageB.SubB has access to")

System.out.println(" " + publicStr + " (inherited from Base)")

 // -- protectedStr is inherited element -> accessible

System.out.println(" " + protectedStr + " (inherited from Base)")

 // -- not accessible

 // System.out.println(defaultStr)

 // System.out.println(privateStr)

47

 Base b = new Base(); // -- other Base instance

System.out.println(" b." + b.publicStr)

 // -- protected element, which belongs to other object -> not accessible

 // System.out.println(b.protectedStr)

 // -- not accessible

 // System.out.println(b.defaultStr)

 // System.out.println(b.privateStr)

 }

}

--

import packageA.*

import packageB.*

// -- testing class

public class TestProtection {

public static void main(String[] args) {

 // -- all classes are public, so class TestProtection

 // -- has access to all of them

new Base().print()

newSubA().print()

newAnotherA().print()

newSubB().print()

newAnotherB().print()

 }

}

Language

Features

48

Object,

Classes and

Features

Types of Variables:

There are three kinds of variables in Java:

1. Local variables

2. Instance variables

3. Class/static variables

Local variables:

 Local variables are declared in methods, constructors, or blocks.

 Local variables are created when the method, constructor or block is entered

and the variable will be destroyed once it exits the method, constructor or

block.

 Access modifiers cannot be used for local variables.

 Local variables are visible only within the declared method, constructor or

block.

 Local variables are implemented at stack level internally.

 There is no default value for local variables so local variables should be

declared and an initial value should be assigned before the first use.

Instance variables:

 Instance variables are declared in a class but outside a method, constructor or

any block.

 When a space is allocated for an object in the heap, a slot for each instance

variable value is created.

 Instance variables are created when an object is created with the use of the

keyword 'new' and destroyed when the object is destroyed.

 Instance variables hold values that must be referenced by more than one

method, constructor or block, or essential parts of an object’s state that must

be present throughout the class.

 Instance variables can be declared in class level before or after use.

 Access modifiers can be given for instance variables.

 The instance variables are visible for all methods, constructors and block in

the class. Normally it is recommended to make these variables private (access

49

level).However, visibility for subclasses can be given for these variables with

the use of access modifiers.

 Instance variables have default values. For numbers the default value is 0, for

Booleans it is false and for object references it is null. Values can be assigned

during the declaration or within the constructor.

 Instance variables can be accessed directly by calling the variable name inside

the class. However, within static methods and different class (when instance

variables are given accessibility) they should be called using the fully

qualified name. Object Reference. Variable Name.

Class/static variables:

 Class variables also known as static variables are declared with the static

keyword in a class but outside a method, constructor or a block.

 There would only be one copy of each class variable per class, regardless of

how many objects are created from it.

 Static variables are rarely used other than being declared as constants.

Constants are variables that are declared as public/private, final and static.

Constant variables never change from their initial value.

 Static variables are stored in static memory. It is rare to use static variables

other than declared final and used as either public or private constants.

 Static variables are created when the program starts and destroyed when the

program stops.

 Visibility is similar to instance variables. However, most static variables are

declared public since they must be available for users of the class.

 Default values are same as instance variables. For numbers the default value is

0, for Booleans it is false and for object references it is null. Values can be

assigned during the declaration or within the constructor. Additionally values

can be assigned in special static initialiser blocks.

 Static variables can be accessed by calling with the class name. Class Name.

Variable Name.

 When declaring class variables as public static final, then variables names

(constants) are all in upper case. If the static variables are not public and final

the naming syntax is the same as instance and local variables.

Language

Features

50

Object,

Classes and

Features

Note: If the variables are accessed from an outside class, the constant

should be accessed as Employee. Department

Check your progress 7

1. List the four categories of visibility for class members.

2. Write a note on instance variables?

...

...

...

...

...

...

...

...

...

...

...

2.9 Let Us Sum Up

When an object is created or, primitive type variable or method is called,

the memory for that object, variable or method is set aside.

The different objects, variables and methods occupy different areas of

memory when created/called. In some cases, we would like to have multiple

objects, variables or methods which occupy the same area of memory (in effect

just having the one instance of that variable or method). The above can be

achieved by using the static keyword; it is possible to have static methods and

variables.

51

In Java, global variables are not allowed. In order to do the same, the

instance variable in the class can be declared static. The effect of doing this is that

when we create multiple objects of that class, every object shares the same

instance variable that was declared to be static.

Sometimes there are situations in which you will want to define a

superclass, which declares the structure of a given abstraction without providing a

complete implementation of every method. That is, many a times you’ll want to

create a superclass that only defines a generalized form that will be shared by all

of its subclasses, leaving it to each subclass to fill in the details. The abstract

keyword can be used with: a) A class, b) A method

An interface is a collection of abstract methods. A class implements an

interface, thereby inheriting the abstract methods of the interface. An interface is

not a class. Writing an interface is similar to writing a class but they are two

different concepts. A class describes the attributes and behaviors of an object. An

interface contains behaviors that a class implements. Unless the class that

implements the interface is abstract, all the methods of the interface need to be

defined in the class.

There is also learning about an interface is similar to a class in the several ways:

However, an interface is different from a class in several ways. Further we learned

about Declaring Interfaces, in this the interface keyword is used to declare an

interface. Here is a simple Example: to declare an interface. Next thing which we

understood is encapsulation can be described as a protective barrier that prevents

the code and data being randomly accessed by other code defined outside the

class. Access to the data and code is tightly controlled by an interface.

 In this second Unit we have also learned about a superclass which is

defined by the abstract class Number that implements the classes that wrap the

numeric type’s byte, short, int, long, float and double. Number possesses abstract

methods that return the value of the object in each of the different number

formats. That is, doubleValue () returns the value as a double, floatValue ()

returns the value as a float and so on. Let us recollect DOUBLE AND FLOAT. Double

and Float are wrappers for floating-point values of type double and float

respectively. The constructors of float are Float (double num) ,Float (float num)

and Float (String str) throws NumberFormatException. The Float objects can be

constructed with values of type float or double. They can also be constructed from

the string representation of a floating-point number. Whereas, the constructors for

Language

Features

52

Object,

Classes and

Features

Double are shown as Double (double num), Double (String str) throws Number

Format Exception. Double objects can be constructed with a double value or a

string containing a floating-point value.

Java provides an easy way to convert numbers into string. The Byte, Short,

Integer and Long classes provide the parseByte(), parseShort(), parseInt() and

parseLong() methods, respectively. These methods return the byte, short, int or

long equivalent of the numeric string with which they are called. There is also

learning related to Packages are used in Java in-order to prevent naming conflicts,

to control access, to make searching/locating and usage of classes, interfaces,

enumerations and annotations easier. Packages add another dimension to access

control, they act as containers for classes and other subordinate packages. Classes

act as containers for data and code. The class is Java’s smallest unit of abstraction,

due to the interplay between classes and packages, Java addresses four categories

of visibility for class members, which are 1) Subclasses in the same package. 2)

Non-subclasses in the same package. 3) Subclasses in different packages. 4)

Classes that are neither in the same package nor subclasses.

2.10 Suggested Answer for Check Your Progress

Check your progress 1

Answers: See Section 2.2

Check your progress 2

Answers: See Section 2.3

Check your progress 3

Answers: See Section 2.4

Check your progress 4

Answers: See Section 2.5

Check your progress 5

Answers: See Section 2.6

53

Check your progress 6

Answers: See Section 2.7

Check your progress 7

Answers: See Section 2.8

2.11 Glossary

1. Interface - An interface is a collection of abstract methods.

2. Instance variables - are declared variables in a class but outside a method,

constructor or any block.

3. Local variables - Local variables are declared in methods, constructors, or

blocks.

2.12 Assignment

Write a note on Java technology.

2.13 Activities

Write any two programs to show the use of Interfaces

2.14 Case Study

Explain Java programming environment with the help of diagram

Language

Features

54

Object,

Classes and

Features

2.15 Further Reading

1. Core Java 2, 2 volumes, Cay S. Horstmann, Gary Cornell, The Sun

Microsystems Press, 1999, Indian reprint 2000.

2. Java 2, the Complete Reference, Patrick Naughton and Herbert Schildt,

Tata McGraw Hill, 1999.

3. Programming with Java, Ed. 2, E. Balagurusamy, Tata McGraw Hill,

1998, reprint, 2000.

4. The Java Tutorial, Ed. 2, 2 volumes, Mary Campione and Kathy Walrath,

Addison Wesley Longmans, 1998.

5. The Java Language Specification, Ed. 2, James Gosling, Bill Joy, Guy

Steele & Gilad Bracha, (Ed. 1 1996, Ed. 2 2000), Sun Microsystems, 2000.

6. Using Java 2, Joseph L. Weber, Prentice Hall, Eastern Economy Edition,

2000

