

64

3.1 Learning Objectives

3.2 Inheritance

3.3 Subclass

3.4 Subclass constructor

3.5 Hierarchical inheritance

3.6 Overriding methods

3.7 Final variables

3.8 Final methods

3.9 Final classes

3.10 Abstract Class

3.11 Multiple inheritance

3.12 The Object Class

3.13 Let us sum up

3.14 Check your Progress

3.15 Check your Progress: Possible Answers

3.16 Further Reading

3.17 Assignments

3.18 Case Study

65

3.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

 Understand the inheritance and its types

 Implementation of various types of inheritance in java.

 Use of final keyword with variables, function and class.

 Use of abstract class and abstract function to implement polymorphism.

 Use of function overriding and its implementation

 Understand Object class and its functions.

3.2 INHERITANCE

 Using inheritance a class can inherit attributes and methods of the other

class. It is like a child inherits the features of parents. It helps us to reuse an already

available class, which is called reusability, an important feature of Object oriented

programming.

 The class which inherits the properties and method of existing class is called

subclass or child class and the existing class is called super class or parent class.

The inheritance can be of various types. They are single inheritance, multiple

inheritance, multilevel inheritance, hierarchical inheritance and hybrid inheritance.

Single inheritance multiple inheritance hierarchical inheritance

Hybrid inheritance Multilevel inheritance

Figure-25 Pictorially view of type of inheritance

CLASS A

CLASS B CLASS C

CLASS D

CLASS A

CLASS B

CLASS C

CLASS A

CLASS B

CLASS A CLASS B

CLASS C

CLASS A

CLASS B CLASS C

66

 Single inheritance : Class B is inherited from Class A.

 Multiple inheritance : Class C is inherited from both Class A and Class B.

 Hierarchical inheritance: Class B and Class C are inherited from a single

Class A.

 Multilevel inheritance: Class B inherited from Class A and Class C is

inherited from Class B. here class C has properties and methods of Class A

also through Class B.

 Hybrid inheritance: it is combination of two inheritance that are hierarchical

and multiple inheritance

 In java we can implement single inheritance, hierarchical inheritance and

multilevel inheritance using class.For implementation of multiple and hybrid

inheritance in java interfaces are used.

3.3 SUB CLASS

 In java for implementing inheritance extends keyword is used. The syntax is

as below,

class X
{
}
class Y extends X
{

}

Here X is a super class or parent class and Y is a sub class or child class. Class Y

inherits class X.

Example,

class A
{

int a;
A() {a = 0; }
A(int x) { a = x; }
void printA() { System.out.println(“ a = “ + a); }

}
class B extends A
{

int b;
B() { a = 0; b = 0; }
B(int x, int y) { a = x; b = y; }

67

void printB()
{
printA();
System.out.println(“ b = “ + b);
}

}

The above example shows single inheritance.

3.4 SUBCLASS CONSTRUCTOR

 In above example, the class B has its own constructor in which it initializes the

value of parameters of both class B (child) as well as class A (parent). We can also

call constructor of parent class in child class for that super keyword is used. The

super keyword is used to store reference of parent class object in child class. The

method and properties of parent class can be accessed using super keyword in child

class.

For example:

class A
{

int a;
A() {a = 0; }
A(int x) { a = x; }
void printA() { System.out.println(“ a = “ + a); }

}
class B extends A
{

int b;
B() {super(); b = 0; }
B(int x, int y) { super(x); b = y; }
void printB()
{
super.printA();
System.out.println(“ b = “ + b);
}

}

Example:

class Person
{

String name;
String address;
int phno;

68

Person(){ name = ""; address = ""; phno = 0;}
Person(String n, String a, int p){ name = n; address = a; phno = p;}
void printP()
{
System.out.println("Name : " + name);
System.out.println("Address : " + address);
System.out.println("Phone Number : " + phno);
}

}

class Student extends Person
{

 int rollNumber;
 String course;
 Student(){ super(); rollNumber = 0; course = "";}
 Student(String n, String a, int p,int r, String c)
{
 super(n,a,p);
 rollNumber = r;
 course = c;
}
void printS()
{
printP();
System.out.println("Roll number : " + rollNumber);
System.out.println("Course : " + course);
}

}
public class ExSimple
{

public static void main(String args[])
{
Student s1=new Student("Aryan","Surat",34567890,12,"Computer");
s1.printS();
}

}

Figure-26Output of program

69

3.5 HIERARCHICAL INHERITANCE

 This inheritance can be implemented using extends key word in java. In

hierarchical inheritance more than one child can be inherited from the same parent

class.

For example,

class Parent

{

}

class child1 extends Parent

{

}

class child2 extends Parent

{

}

 Here, class Parent is the super class/parent class, which has two children

class Child1 and Child2. Child1 and Child2 are also called sibling as they have same

parent.

Example:

class A
{

int a;
A() {a = 0; }
A(int x) { a = x; }
void printA() { System.out.println(“ a = “ + a); }

}

class B extends A
{

int b;
B() {super(); b = 0; }
B(int x, int y) { super(x); b = y; }
void printB()
{
super.printA();

70

System.out.println(“ b = “ + b);
}

}

class C extends A
{

int c;
C() {super(); c = 0; }
C(int x, int z) { super(x); c = z; }
void printB()
{
super.printA();
System.out.println(“ c = “ + c);
}

}
public class ExInh
{

public static void main(String args[])
{

 B b1 = new B(10,20);

 C c1 = new C(23,34);
 b1. printB();

 c1. printC();
}

}

Figure-27 Output of program

3.6 OVERRIDING METHODS

 When a child class inherits a parent class, we can redefine a method of

parent class in child class. This concept is called method overriding.

For example,

class A
{

int a;
A() {a = 0; }

71

A(int x) { a = x; }
void printData() { System.out.println(“ a = “ + a); }

}
class B extends A
{

int b;
B() {super(); b = 0; }
B(int x, int y) { super(x); b = y; }
void printData() //the method of parent class is redefined
{
System.out.println(“ a = “ + a);
System.out.println(“ b = “ + b);
}

}

public class ExInh
{

public static void main(String args[])
{
 A a1 = new A(10);
 B b1 = new B(23,34);
 a1. printData();
 b1. printData();
}

}

Figure-28 Output of program

 In above example printData() method of parent class A is override in child

class B. when we call printData method using object of child class, the method of

child class will be called. When we call same method using object of parent class,

the parent class printData method will be called.

 We can also call child class method using reference of parent class. That

means when parent class refer parent object it will call parent class’s method. And

when parent class refers child class object, it will call child class’s method.

 It is decided at run time which method will be called using reference of parent

class. This concept is called dynamic binding or dynamic method dispatch.

For example,

72

class B extends A
{

int b;
B() {super(); b = 0; }
B(int x, int y) { super(x); b = y; }
void printData() //the method of parent class is redefined
{
System.out.println(" a = " + a);
System.out.println(" b = " + b);
}

}

public class ExInh
{

public static void main(String args[])
{
 A a1=new A(10);
 B b1=new B(23,34);
 b1.printData();
 a1=b1;
 b1.printData();
}

}

 In this example in main method b1.printData() method is called twice. Both

time it will run different method. This is due to runtime binding of object with class. It

decides at run time which method will be called. This can also be an example of

polymorphism.

3.7 FINAL VARIABLE

 In java, when a variable is declared as final, it is constant. We have to assign

value to this variable while declaring them final. We cannot change value of final

variables in our program. Final variables are same as constant variables of C++ and

C.

For example,

final int N=50;

Using final variable in java program
public class ExInh
{

public static void main(String args[])
{

73

final int x=80;
int[] a=new int[x]; //we can use x but can not modify it

x=90; //this gives compilation error as x is constant
}

}

Figure-29 Output of program

3.8 FINAL METHOD

 We can also declare method of a class final. If any method of class defined

final it cannot be override/redefine in its child class. Final methods of parent calss

can not be overridden in child class. The final methods cannot be changed outside

the class.

For example,

class A
{

int a;
A() {a = 0; }
A(int x) { a = x; }
final void printData() { System.out.println(“ a = “ + a); } // can not override

}
class B extends A
{

int b;
B() {super(); b = 0; }
B(int x, int y) { super(x); b = y; }
void printB()
{
Super.printData();
System.out.println(“ b = “ + b);
}

}
However, if we override the method declared final it gives us a compilation error.

For example,
class A
{

 int a;

74

 A(){ a=0;}
 A(int x){ a=x;}
 final void printA()
{
 System.out.println(" a = " + a);
}

}
class B extends A
{

 int b;
 B(){ super(); b=0;}
B(int x, int y) { super(x); b=y;}
int printA(){ return a+b;}

}
public class ExFinal
{

public static void main(String args[])
{
B b1=new B(10,20);
System.out.println(b1.printA());
}

}

 Figure-30 Output of program

3.9 FINAL CLASS

 In java class can also be final. The final class restrict them from inheritance.

We cannot inherit a class if it is declared as final.

final class A
{
}

We can not create any class B which inherits class A.
For example,

final class A
{

 int a;
 A(){ a=0;}

75

 A(int x){ a=x;}
 void printA()
{
 System.out.println(" a = " + a);
}

}
class B extends A
{

 int b;
 B(){ super(); b=0;}
B(int x, int y) { super(x); b=y;}

}
public class ExFinal
{

public static void main(String args[])
{
B b1=new B(10,20);
b1.printA();
}

}

This program gives compilation error because we try to inherit final class A in this
program.

Figure-31 Output of program

3.10 ABSTRACT CLASS

 Abstract class is used to implement abstraction which is am important OOP

concept. It is used to create a class with partial implementation. The subclass of

abstract class must complete the implementation left in abstract class.

 In java, abstract class can be created using abstract keyword. The abstract

class is a class which has at least one method declared as an abstract method.

 Abstract methods are the methods of a class which are declared in class and

have no definition. These methods must be defined in the child classes which are

inherited from that abstract class.

76

 We cannot create an object of abstract class. The abstract class can define

constructor, non abstract methods, static methods as well as final methods.

 Abstract class enforces inheritance. To use abstract class we have to create a

class which inherits an abstract class. We can access the method of subclass using

the parent class reference.

For example,

abstract class A
{

int a;
A() {a = 0; }
A(int x) { a = x; }
abstract void printData();

}
class B extends A
{

int b;
B() {super(); b = 0; }
B(int x, int y) { super(x); b = y; }
void printData() //definition of abstract method of parent class A
{
System.out.println(“ a = “ + a);
System.out.println(“ b = “ + b);
}

}

Example:

abstract class Shape
{

double ar;
double peri;
Shape()
{
 ar = 0.0;
 peri = 0.0;
}
final double PI=3.14;
abstract void area();
abstract void perimeter();
void printArea()
{
System.out.println("Area : " + ar);
}
void printPerimeter()
{
System.out.println("Perimeter : " + peri);

77

}

}

class Circle extends Shape
{

 int r;
 Circle(){ r = 0; }
 Circle(int r){ this.r = r; }
 void area()
{
 ar = PI*r*r;
}
 void perimeter()
{
 peri = 2*PI*r;
}

}

class Square extends Shape
{

 int s;
 Square(){ s = 0; }
 Square(int s){ this.s = s; }
 void area()
{
 ar = s * s;
}
 void perimeter()
{
 peri = 4 * s;
}

}

public class ExInh1
{

public static void main(String args[])
{
Shape c1=new Circle(2);
c1.area();
c1.printArea();
c1.perimeter();
c1.printPerimeter();
c1=new Square(2);
c1.area();
c1.printArea();
c1.perimeter();
c1.printPerimeter();

78

}
}

Figure-32 Output of program

 In the above example in main method, we are using reference of Shape class

to call methods of child class. When reference of Shape (c1) refers to circle

object(line 1) it calls method of Circle class. Same reference can also be used to call

the method of Square class. You can see in the main method, line number 2,3,4,5

and line 7,8,9,10 are same in syntax but the line 2,3,4 and 5 calls method of Circle

class where as late four lines calls methods of square class. Thus same line code

can be executed differently which is an implementation of polymorphism concept of

OOP.

3.11 MULTIPLE INHERITANCE

 The multiple inheritance cannot be implemented in java using class. We have

to use interface. For creating interface we need to use interface keyword. Interface

are created with declaration of methods and constant variables in it. All the methods

of interface are either abstract or final. All variables in interface are final and static.

We cannot create an instance of interface. We need to implement it in its child class.

Interface can extend other interface. A class can implement one or more interface

using implement keyword. By default, all the method in interface are abstract and all

the variables are final and static. The method in interface must be declared public.

For example multiple inheritance can be implemented as below,

interface A
{

int x = 5;
public void getData();
public void printData();

}

79

interface B
{

int y = 2;
public void getD();
public void printD();

}

class C implements A,B
{

int [] data;
C () { int [] data = new int[x + y]; }
public void getData()
{
for(int i = 0; i < x ; i++)
data[i] = 10 * (i + 1);
}
public void printData()
{
for(int i = 0; i < x ; i++)
System.out.println(data[i]);
}
public void getD()
{
for(int i = x; i < x+y ; i++)
data[i] = 10 * (i + 1);
}
public void printD()
{
for(int i = x; i < x+y ; i++)
System.out.println(data[i]);
 }

}

Example:

interface Shape
{

double PI=3.14;
public double area();
public double perimeter();
public void printData();

}

class Circle implements Shape
{

 int r;
 Circle(){ r = 0; }
 Circle(int r){ this.r = r; }

80

public double area()
{
 return PI*r*r;
}
public double perimeter()
{
 return 2*PI*r;
}
public void printData()
{
System.out.println("Area : " + area());
System.out.println("Perimeter : " + perimeter());
}

}

class Square implements Shape
{

 int s;
 Square(){ s = 0; }
 Square(int s){ this.s = s; }
public double area()
{
 return s*s*1.0;
}
public double perimeter()
{
 return 4.0*s;
}
public void printData()
{
System.out.println("Area : " + area());
System.out.println("Perimeter : " + perimeter());
}

}

public class ExInf
{

public static void main(String args[])
{
Shape c1=new Circle(5);
c1.printData();
}

}

Figure-33 Output of program

81

3.12 THE OBJECT CLASS

 Object class is available in java.lang package in java. Any class created in

java, automatically derived from Object class. Hence methods of Object class

available in all classes of java. The Object class is root of all class.

Some of the methods of Object class:

 String toString():

it converts an object into String. It returns a string consists of name of class,

‘@’ and hashcode of the object. We can customize the output of toString()

function by overriding it in our class.

Example,

class A
{
int a;
A() { a = 0; }
A(int x) { a = x; }
}
public class ObjEx
{
public static void main(String args[])
{
A x1 = new A(5);
System.out.println(“ toString “ + x1.toString());
}
}

Figure-34 Output of program

 Example of overriding toString()

class A
{
int a;
A() { a = 0; }
A(int x) { a = x; }
public String toString()

82

{
return “ Object of Class A ”;
}
}
public class ObjEx
{
public static void main(String args[])
{
A x1 = new A(5);
System.out.println(“ toString “ + x1.toString());
}
}

Figure-35 Output of program

 int hashCode():

it is used to get hashvalue of object which can be used to search for object.

Hashcode is unique for each object.

Example,

public class ObjEx
{
public static void main(String args[])
{
String s = new String(" Hello ");
Class c = s.getClass();
System.out.println (" class of object s is :" + c.getName());

}
}

Figure-36 Output of program

 boolean equals(Object obj):

compare object obj with this object and returns true if equal else false.

For example,

class A
{
int a;

83

A() { a = 0; }
A(int x) { a = x; }
}
public class ObjEx
{
public static void main(String args[])
{
A x1 = new A(5);
A x2 = x1;
if (x1.equals(x2))
System.out.println(" x1 and x2 are equal");
else
System.out.println(" x1 and x2 are not equal");

}
}

Figure-37 Output of program

 Class getClass():

Returns Class object of this object. The Class object has method name

getName() which returns name of class which of the type of this object.

For example:

A a = new A(15);
Class c = a.getClass();
// print A as class name
System.out.println(“ class of object s is :” + c.getName());

Example,

public class ObjEx
{
public static void main(String args[])
{
String s = new String(" Hello ");
Class c = s.getClass();
System.out.println(" class of object s is :" + c.getName());

}
}

84

Figure-38 Output of program

 finalize():

This method is called before call of garbage collector in java. this method is

called for each object once.

for example,

class A
{
int a;
A(){ a = 0; }
A(int x) { a = x; }
protected void finalize()
{
System.out.println(“ finalize method is called “);
}
}
public class ExFin
{
public static void main(String args[])
{
A a1=new A(4);
a1 = null;
System.gc();
}
}

Figure-39 Output of program

 Object clone():

This method returns an object that is same as this object. For using clone()

function the class must implements Cloneable interface and implements a

function name clone in it. Also the method which calling clone function must

handle the CloneNotSupportedException. We will discuss more about

Exception in unit 6 of this book.

For example,

class A implements Cloneable
{
int a;
A() { a = 0; }
A(int x) { a = x; }

85

 public Object clone() throws CloneNotSupportedException
 {
 return super.clone();
 }
public void printData()
{
System.out.println(" a : " + a);
}

}
public class ObjEx
{
public static void main(String args[]) throws CloneNotSupportedException
{
A x1 = new A(5);
A x2 = (A) x1.clone();
x1.printData();
x2.printData();

}
}

Figure-40 Output of program

3.13 LET US SUM UP

Inheritance: it is an important object oriented programming features in which we can

reuse existing class by adding new features and methods in it.

Subclass: in inheritance the class which derives the existing class is called subclass

Super class: in inheritance class from which a subclass is derived is called super

class

super keyword: in child class, super is a reference to object of parent class. We can

access parent class properties and method using super key word.

method overriding: The function of parent class and be redefined in child class, this

is called method overriding.

final variable: it is used to define constant variables in java.

final function: it is a function of parent class which cannot be overridden in child

class.

86

final class: the final class cannot be inherited. We cannot create a child of final

class.

abstract class: Abstract class is a class which has at least one abstract method

declared in it. This class cannot be instantiated. We have to inherit this class to used

it.

abstract function: this methods have only signature in class. The subclass which

inherits the parent class must define all the abstract methods in it.

Interface: it must have only static final variables and abstract and final methods in it.

It supports multiple inheritance in java.

Object class: Object class is available in java.lang package library. It is the parent of

each class created in java program

3.14 CHECK YOUR PROGRESS

 True-False with reason

1. extends keyword is used to inherit a class.

2. implements keyword is used to inherit a class.

3. abstract class cannot be inherited.

4. Final class cannot be inherited.

5. Final method cannot be overloaded.

6. Interface and class are same.

7. Object class is parent of each class created in java.

8. Interface can have at least one abstract function in it.

9. All the variable declared in interface are final and static.

10. All variables declared in abstract class are final.

11. Method overriding is writing more than one method in a class with same

name.

12. Super is a reference to object which is accessing the variable or method

of class.

13. We can call constructor of parent class using super keyword.

14. Multilevel inheritance is not supported in java using class.

15. Multiple inheritance is possible using interface.

 Compare the followings

87

1. Class and interface

2. Abstract class and interface

3. Method overloading and method overriding

4. Constructor and finalize method

5. Final class and abstract class.

6. Final variable and static variable

7. Final method and abstract method

 MCQ.

1) In following Java Program which sow method is called in main()?

class Base {

 public void show() {

 System.out.println("Base::show() called");

 }

}

class Derived extends Base {

 public void show() {

 System.out.println("Derived::show() called");

 }

}

public class Main {

 public static void main(String[] args) {

 Base b = new Derived();

 b.show();

 }

}

(a) show method of Derived Class

(b) show method of Base Class

2) In following Java Program which sow method is called in main()?

88

class Base {

 final public void show() {

 System.out.println("Base::show() called");

 }

}

class Derived extends Base {

 public void show() {

 System.out.println("Derived::show() called");

 }

}

class Main {

 public static void main(String[] args) {

 Base b = new Derived();;

 b.show();

 }

}

(a) show method of Derived (b) show method of Base

(c) compile time error (d) run time error

3) . ……………….. helps to extend the functionality of an existing by adding

more methods to the subclass.

a) Mutual Exclusion b) Inheritance

c) Package d) Interface

4) An …………………. is an incomplete class that requires further

specification.

a) abstract class b) final class

c) static class d) super class

5) A class can be declared as ………………………. if you do not want the

class to be sub-classed.

a) abstract b) final

89

c) static d) super

6) The …………………….. keyword is used to derive a class from a super-

class.

a) adds b) extends

c) duplicate d) inherit

7) If a class that implements an interface does not implement all the methods

of the interface, then the class becomes a/an …………………….. class.

a) abstract b) final

c) static d) super

8) Does a subclass inherit both member variables and methods?

a) No--only member variables are inherited.

b) No--only methods are inherited.

c) Yes--both are inherited

d) Yes--but only one or the other are inherited.

9) How many objects of a given class can there be in a program?

a) One per defined class.

b) One per constructor definition.

c) As many as the program needs.

d) One per main() method.

 10) Say that there are three classes: Computer, AppleComputer, and

IBMComputer. What are the likely relationships between these classes?

a) Computer is the superclass, AppleComputer and IBMComputer are

subclasses of Computer.

b) IBMComputer is the superclass, AppleComputer and Computer are

subclasses of IBMComputer.

c) Computer, AppleComputer and IBMComputer are sibling classes.

90

d) Computer is a superclass, AppleComputer is a subclass of Computer,

and IBMComputer is a subclass of AppleComputer

11) Which of these is correct way of inheriting class A by class B?

a) class B + class A {} b) class B inherits class A {}

c) class B extends A {} d) class B extends class A {}

12) What is the output of this program?

 class A

 {

 int i;

 void display()

 {

 System.out.println(i);

 }

 }

 class B extends A

 {

 int j;

 void display()

 {

 System.out.println(j);

 }

 }

 class inheritance_demo

 {

 public static void main(String args[])

 {

 B obj = new B();

 obj.i=1;

 obj.j=2;

 obj.display();

 }

 }

91

a) 0

b) 1

c) 2

d) Compilation Error

13) What is the output of this program?

 class A

 {

 int i;

 }

 class B extends A

 {

 int j;

 void display()

 {

 super.i = j + 1;

 System.out.println(j + " " + i);

 }

 }

 class inheritance

 {

 public static void main(String args[])

 {

 B obj = new B();

 obj.i = 1;

 obj.j = 2;

 obj.display();

 }

 }

a) 2 2 b) 3 3

c) 2 3 d) 3 2

14) What is the output of this program?

92

class A

 {

 public int i;

 public int j;

 A()

 {

 i = 1;

 j = 2;

 }

 }

 class B extends A

 {

 int a;

 B()

 {

 super();

 }

 }

 class super_use

 {

 public static void main(String args[])

 {

 B obj = new B();

 System.out.println(obj.i + " " + obj.j)

 }

 }

a) 1 2 b) 2 1

c) Runtime Error d) Compilation Error

3.15 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

 True-False with reason

1. True

93

2. False. implements keyword is used to inherit an interface.

3. False. abstract class has to be inherited.

4. True

5. False. Final methods cannot be overridden.

6. False. Class does not support multiple inheritance where as interface

does.

7. True

8. False.Interface has all abstract functions in it.

9. True

10. False. At least one method in abstract class must be abstract.

11. False. Method overriding is writing a definition of a parent class’s method

in subclass.

12. False. Super is a reference to object which is accessing the variable or

method of parent class

13. True.

14. False. Multilevel inheritance is supported in java using class.

15. True.

 Compare the followings

1. Class v/s interface

Class Interface

Class can have member variables

and functions

Interface can have final and static

member variables and abstract or

final methods.

It does not support multiple

inheritance

It supports multiple inheritance

It can be instantiated It can not directly be instantiated

2. Abstract class v/s Interface

Abstract Class Interface

It must have at least one abstract

method

It has abstract or final methods.

94

It does not support multiple

inheritance

It supports multiple inheritance

All member variables are not final. All member variables must be final

3. Method overloading v/sMethod overriding

Method overloading Method overriding

Writing method with same name and

different arguments in a class

Writing a method which is defined in

parent class again in child class with

new definition.

Method overloading is not compulsory Abstract methods must be override

4. Constructor v/sFinalize method

Constructor Finalizemethod

It is a function in a class which has

same name as class name.

It is a protected function of Object

class which can be called at the end

of the program.

It is called when object is created It is called when object are

destroyed by garbage collector.

It is used to initialize the object It is used to run some code when

object is deleted.

5. Final class v/sAbstract class.

Final class Abstract class

The restricts inheritance They enforce inheritance

The method of this class can not be

abstract

At least one method of this class

must be abstract.

final keyword is used abstract keyword is used.

6. Final variable v/sStatic variable

95

Final variable Static variable

They used to defined constant in java They used to define class variable in

java

They are not shared among all

objects of class

They are shared among all objects

of class.

They can be accessed using object

name

They can be accessed using class

name

7. Final method v/s abstract method

Final methods Static methods

They are the method in parent class

which can not be redefine in child

class

They are the methods of class which

can access only static members of

class.

They can be accessed using object

name

They can be accessed using class

name

 MCQ.

1) a

2)c

3) b

4) a

5) b

6) b

7) a

8) c

9) c

10) a

11) c

12) c

13) a

14) a

3.16 FURTHER READING

1. Java Inheritance (Subclass and Superclass) - W3Schools
https://www.w3schools.com/java/java_inheritance.asp

2. Inheritance in Java OOPs with Example - Guru99https://www.guru99.com/java-

class-inheritance.html

3. “Java 2: The Complete Reference” by Herbert Schildt, McGraw Hill
Publications.

https://www.w3schools.com/java/java_inheritance.asp

96

4. “Effective Java” by Joshua Bloch, Pearson Education

3.17ASSIGNMENTS

 Write java program for following

1) Create a class to find out the Area and perimeter of rectangle.

2) Create a class quadrilateral and create two methods each for

calculating area & perimeter of the quadrilateral with one & two

parameters respectively Check number is even or odd.

3) Define a class student with the following specifications:

Private members of the class:

Admission Number - An Integer

Name - string of 20 characters

Class - Integer

Roll Number - Integer

Public members of the class:

getdata() - To input the data

showdata() - To display the data

Write a program to define an array of 10 objects of this class, input the

data in this array and then display this list.

4) A class STUDENT has 3 data members:

Name, Roll Number, Marks of 5 subjects, Stream

and member functions to input and display data. It also has a function

member to assign stream on the basis of the table given below:

Average Marks Stream

96% or more Computer Science

91% - 95% Electronics

86% - 90% Mechanical

81% - 85% Electrical

75% - 80% Chemical

71% - 75% Civil

Declare a structure STUDENT and define the member functions.

Write a program to define a structure STUDENT and input the marks of

n (<=20) students and for each student allot the stream.

97

5) Define a POINT class for two-dimensional points (x, y). Include

constructors, a negate() function to transform the point into its negative,

a norm() function to return the point's distance from the origin (0,0), and

a print() function besides the functions to input and display the

coordinates of the point. Use this class in a menu driven program to

perform various operations on a point.

6) Write a program implement a class 'Complex' of complex numbers.

 The class should be include member functions to add and subtract two

 complex numbers.

7) Write a Program to implement a sphere class with appropriate

members and member function to find the surface area and the

volume. (Surface = 4 π r2 and Volume = 4/ 3 π r3).

8) Write a program to implement an Account Class with member functions

to Compute Interest, Show Balance, Withdraw and Deposit amount

from the Account.

3.18 CASE STUDY

File Player.java contains a class that holds information about an athlete: name,

team, and uniform number. File ComparePlayers.java contains a skeletal program

that uses the Player class to read in information about two baseball players and

determine whether or not they are the same player.

1. Fill in the missing code in ComparePlayers so that it reads in two players and

prints "Same player" if they are the same, "Different players" if they are different. Use

the equals method, which Player inherits from the Object class, to determine whether

two players are the same. Are the results what you expect?

2. The problem above is that as defined in the Object class, equals does an address

comparison. It says that two objects are the same if they live at the same memory

location, that is, if the variables that hold references to them are aliases. The two

Player objects in this program are not aliases, so even if they contain exactly the

same information they will be "not equal." To make equals compare the actual

information in the object, you can override it with a definition specific to the class. It

98

might make sense to say that two players are "equal" (the same player) if they are

on the same team and have the same uniform number. Use this strategy to define

an equals method for the Player class. Your method should take a Player object and

return true if it is equal to the current object, false otherwise. Test your

ComparePlayers program using your modified Player class. It should give the results

you would expect.

import java.util.Scanner;

public class Player

{

private String name;

private String team;

private int jerseyNumber;

public void readPlayer()

{ Scanner scan = new Scanner(System.in);

System.out.print("Name: ");

name = scan.nextLine();

System.out.print("Team: ");

team = scan.nextLine();

System.out.print("Jersey number: ");

 jerseyNumber = Scan.nextInt();

}

}

import java.util.Scanner;

public class ComparePlayers

{

public static void main(String[] args)

{

Player player1 = new Player();

Player player2 = new Player();

99

Scanner scan = new Scanner();

 // Read player 1

// Read player 2

// compare player1 and player2

 } }

	2. Inheritance in Java OOPs with Example - Guru99https://www.guru99.com/java-class-inheritance.html

