

121

Unit-4: Permissions

Unit Structure

4.0 Learning Objectives

4.1 Introduction

4.2 Permission approval

4.3 Request prompts for dangerous permissions

4.4 Permission for optional hardware features

4.5 Custom App Permission

4.6 Permission Protection Level

4.7 How to view App’s permission?

4.8 Let us sum up

4.9 Check your Progress: Possible Answers

4.10 Further Reading

4.11 Assignment

4.12 Activity

4

122

4.0 Learning Objectives
After studying this unit, students will be able to:

• Define permission

• List different types of permission and their uses

• Define custom app permission

• Understand various permission protection levels

4.1 Introduction
The purpose of a permission is to protect the privacy of an Android user. Android

apps must request permission to access sensitive user data (such as contacts and

SMS), as well as certain system features (such as camera and internet). Depending

on the feature, the system might grant the permission automatically or might prompt

the user to approve the request.

A central design point of the Android security architecture is that no app, by default,

has permission to perform any operations that would adversely impact other apps,

the operating system, or the user. This includes reading or writing the user's private

data (such as contacts or emails), reading or writing another app's files, performing

network access, keeping the device awake, and so on.

This unit provides an overview of how Android permissions work, including: how

permissions are presented to the user, the difference between install-time and

runtime permission requests, how permissions are enforced, and the types of

permissions and their groups.

4.2 Permission Approval

An app must publicize the permissions it requires by including <uses-permission>

tags in the app manifest. For example, an app that needs to send SMS messages

would have this line in the manifest:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.snazzyapp">
<uses-permission android:name="android.permission.SEND_SMS"/>

123

<application ...>
 ...
</application>
</manifest>

If your app lists normal permissions in its manifest (that is, permissions that don't

pose much risk to the user's privacy or the device's operation), the system

automatically grants those permissions to your app.

If your app lists dangerous permissions in its manifest (that is, permissions that could

potentially affect the user's privacy or the device's normal operation), such as the

SEND_SMS permission above, the user must explicitly agree to grant those

permissions.

4.3 Request prompts for dangerous permissions

Only dangerous permissions require user agreement. The way Android asks the

user to grant dangerous permissions depends on the version of Android running on

the user's device, and the system version targeted by your app.

Runtime requests (Android 6.0 and higher)

If the device is running Android 6.0 (API level 23) or higher, and the app's

targetSdkVersion is 23 or higher, the user isn't notified of any app permissions at

install time. Your app must ask the user to grant the dangerous permissions at

runtime. When your app requests permission, the user sees a system dialog as

shown in figure 1 telling the user which permission group your app is trying to

access. The dialog includes a Deny and Allow button.

If the user denies the permission request, the next time your app requests the

permission, the dialog contains a checkbox that, when checked, indicates the user

doesn't want to be prompted for the permission again as shown in figure 2.

124

Figure-58

If the user checks the Never ask again box and taps Deny, the system no longer

prompts the user if you later attempt to requests the same permission.

Even if the user grants your app the permission it requested you cannot always rely

on having it. Users also have the option to enable and disable permissions one-by-

one in system settings. You should always check for and request permissions at

runtime to guard against runtime errors (SecurityException).

Install-time requests (Android 5.1.1 and below)

If the device is running Android 5.1.1 (API level 22) or lower, or the app's

targetSdkVersion is 22 or lower while running on any version of Android, the system

automatically asks the user to grant all dangerous permissions for your app at install-

time as shown in figure 2.

125

Figure-59

If the user clicks Accept, all permissions the app requests are granted. If the user

denies the permissions request, the system cancels the installation of the app.

If an app update includes the need for additional permissions the user is prompted to

accept those new permissions before updating the app.

4.4 Permissions for optional hardware features

Access to some hardware features such as Bluetooth or the camera requires app

permission. However, not all Android devices actually have these hardware features.

So if your app requests the CAMERA permission, it's important that you also include

the <uses-feature> tag in your manifest to declare whether or not this feature is

actually required. For example:

<uses-feature android:name="android.hardware.camera" android:required="false" />

If you declare android:required="false" for the feature, then Google Play allows your

app to be installed on devices that don't have the feature. You then must check if the

current device has the feature at runtime by calling

126

PackageManager.hasSystemFeature(), and gracefully disable that feature if it's not

available.

If you don't provide the <uses-feature> tag, then when Google Play sees that your

app requests the corresponding permission, it assumes your app requires this

feature. So it filters your app from devices without the feature, as if you declared

android:required="true" in the <uses-feature> tag.

4.5 Custom App Permission

Permissions aren't only for requesting system functionality. Services provided by

apps can enforce custom permissions to restrict who can use them.

Activity permission enforcement

Permissions applied using the android:permission attribute to the <activity> tag in the

manifest restrict who can start that Activity. The permission is checked during

Context.startActivity() and Activity.startActivityForResult(). If the caller doesn't have

the required permission then SecurityException is thrown from the call.

Service permission enforcement

Permissions applied using the android:permission attribute to the <service> tag in

the manifest restrict who can start or bind to the associated Service. The permission

is checked during Context.startService(), Context.stopService() and

Context.bindService(). If the caller doesn't have the required permission then

SecurityException is thrown from the call.

Broadcast permission enforcement

Permissions applied using the android:permission attribute to the <receiver> tag

restrict who can send broadcasts to the associated BroadcastReceiver. The

permission is checked after Context.sendBroadcast() returns, as the system tries to

deliver the submitted broadcast to the given receiver. As a result, a permission

failure doesn't result in an exception being thrown back to the caller; it just doesn't

deliver the Intent.

127

In the same way, a permission can be supplied to Context.registerReceiver() to

control who can broadcast to a programmatically registered receiver. Going the other

way, a permission can be supplied when calling Context.sendBroadcast() to restrict

which broadcast receivers are allowed to receive the broadcast.

Note that both a receiver and a broadcaster can require permission. When this

happens, both permission checks must pass for the intent to be delivered to the

associated target.

Content Provider permission enforcement

Permissions applied using the android:permission attribute to the <provider> tag

restrict who can access the data in a ContentProvider. Unlike the other components,

there are two separate permission attributes you can set: android:readPermission

restricts who can read from the provider, and android:writePermission restricts who

can write to it. Note that if a provider is protected with both a read and write

permission, holding only the write permission doesn't mean you can read from a

provider.

The permissions are checked when you first retrieve a provider and as you perform

operations on the provider.

Using ContentResolver.query() requires holding the read permission;

using ContentResolver.insert(), ContentResolver.update(), ContentResolver.delete()

requires the write permission. In all of these cases, not holding the required

permission results in a SecurityException being thrown from the call.

URI permissions

The standard permission system described so far is often not sufficient when used

with content providers. A content provider may want to protect itself with read and

write permissions, while its direct clients also need to hand specific URIs to other

apps for them to operate on.

128

A typical example is attachments in a email app. Access to the emails should be

protected by permissions, since this is sensitive user data. However, if a URI to an

image attachment is given to an image viewer, that image viewer no longer has

permission to open the attachment since it has no reason to hold a permission to

access all email.

The solution to this problem is per-URI permissions: when starting an activity or

returning a result to an activity, the caller can set

Intent.FLAG_GRANT_READ_URI_PERMISSION and/or

Intent.FLAG_GRANT_WRITE_URI_PERMISSION. This grants the receiving activity

permission access the specific data URI in the intent, regardless of whether it has

any permission to access data in the content provider corresponding to the intent.

This mechanism allows a common capability-style model where user interaction

(such as opening an attachment or selecting a contact from a list) drives ad-hoc

granting of fine-grained permission. This can be a key facility for reducing the

permissions needed by apps to only those directly related to their behavior.

To build the most secure implementation that makes other apps accountable for their

actions within yor app, you should use fine-grained permissions in this manner and

declare your app's support for it with the android:grantUriPermissions attribute or

<grant-uri-permissions> tag.

Other permission enforcement

Arbitrarily fine-grained permissions can be enforced at any call into a service. This is

accomplished with the Context.checkCallingPermission() method. Call with a desired

permission string and it returns an integer indicating whether that permission has

been granted to the current calling process. Note that this can only be used when

you are executing a call coming in from another process, usually through an IDL

interface published from a service or in some other way given to another process.

There are a number of other useful ways to check permissions. If you have the

process ID (PID) of another process, you can use the Context.checkPermission()

method to check a permission against that PID. If you have the package name of

129

another app, you can use the PackageManager.checkPermission() method to find

out whether that particular package has been granted a specific permission.

Check your progress-1

a) What is purpose of permission?

b) Every apphas by default, permission to perform any operations that would

adversely impact other apps, the operating system, or the user (True/False)

c) An app must publicize the permissions it requires by including ______tags in the

app manifest.

d) In mobile with Android 6.0 and higher, the request for permission is requested to

user at __________

(A) Runtime (B) Install-time (C) Either (A) or (B) (D) Neither (A) nor (B)

e) Services provided by apps can enforce custom permissions to restrict who can

use them.

4.6 Permission Protection levels

Permissions are divided into several protection levels. The protection level affects

whether runtime permission requests are required.

There are three protection levels that affect third-party apps: normal, signature, and

dangerous permissions.

Normal permissions

Normal permissions cover areas where your app needs to access data or resources

outside the app's sandbox, but where there's very little risk to the user's privacy or

the operation of other apps. For example, permission to set the time zone is a

normal permission.

130

If an app declares in its manifest that it needs a normal permission, the system

automatically grants the app that permission at install time. The system doesn't

prompt the user to grant normal permissions, and users cannot revoke these

permissions.

As of Android 9 (API level 28), the following permissions are classified as

PROTECTION_NORMAL:

ACCESS_LOCATION_EXTRA_COMMANDS

ACCESS_NETWORK_STATE

ACCESS_NOTIFICATION_POLICY

ACCESS_WIFI_STATE

BLUETOOTH

BLUETOOTH_ADMIN

BROADCAST_STICKY

CHANGE_NETWORK_STATE

CHANGE_WIFI_MULTICAST_STATE

CHANGE_WIFI_STATE

DISABLE_KEYGUARD

EXPAND_STATUS_BAR

FOREGROUND_SERVICE

GET_PACKAGE_SIZE

INSTALL_SHORTCUT

INTERNET

KILL_BACKGROUND_PROCESSES

MANAGE_OWN_CALLS

MODIFY_AUDIO_SETTINGS

NFC

READ_SYNC_SETTINGS

READ_SYNC_STATS

RECEIVE_BOOT_COMPLETED

REORDER_TASKS

REQUEST_DELETE_PACKAGES

SET_ALARM

SET_WALLPAPER

SET_WALLPAPER_HINTS

TRANSMIT_IR

USE_FINGERPRINT

VIBRATE

WAKE_LOCK

WRITE_SYNC_SETTINGS

Signature permissions

The system grants these app permissions at install time, but only when the app that

attempts to use permission is signed by the same certificate as the app that defines

the permission.

As of Android 8.1 (API level 27), the following permissions that third-party apps can

use are classified as PROTECTION_SIGNATURE:

131

BIND_ACCESSIBILITY_SERVICE

BIND_AUTOFILL_SERVICE

BIND_CARRIER_SERVICES

BIND_CHOOSER_TARGET_SERVICE

BIND_CONDITION_PROVIDER_SERVICE

BIND_DEVICE_ADMIN

BIND_DREAM_SERVICE

BIND_INCALL_SERVICE

BIND_INPUT_METHOD

BIND_MIDI_DEVICE_SERVICE

BIND_NFC_SERVICE

BIND_NOTIFICATION_LISTENER_SERVICE

BIND_PRINT_SERVICE

BIND_SCREENING_SERVICE

BIND_TELECOM_CONNECTION_SERVICE

BIND_TEXT_SERVICE

BIND_TV_INPUT

BIND_VISUAL_VOICEMAIL_SERVICE

BIND_VOICE_INTERACTION

BIND_VPN_SERVICE

BIND_VR_LISTENER_SERVICE

BIND_WALLPAPER

CLEAR_APP_CACHE

MANAGE_DOCUMENTS

READ_VOICEMAIL

REQUEST_INSTALL_PACKAGES

SYSTEM_ALERT_WINDOW

WRITE_SETTINGS

WRITE_VOICEM

Dangerous permissions

Dangerous permissions cover areas where the app wants data or resources that

involve the user's private information, or could potentially affect the user's stored

data or the operation of other apps. For example, the ability to read the user's

contacts is a dangerous permission. If an app declares that it needs a dangerous

permission, the user has to explicitly grant the permission to the app. Until the user

132

approves the permission, your app cannot provide functionality that depends on that

permission.

To use a dangerous permission, your app must prompt the user to grant permission

at runtime. For a list of dangerous permissions, see table 16 below.

Permission Group Permissions
CALENDAR READ_CALENDAR

 WRITE_CALENDAR
CALL_LOG READ_CALL_LOG

 WRITE_CALL_LOG
 PROCESS_OUTGOING_CALLS

CAMERA CAMERA
CONTACTS READ_CONTACTS

 WRITE_CONTACTS
 GET_ACCOUNTS

LOCATION ACCESS_FINE_LOCATION
 ACCESS_COARSE_LOCATION

MICROPHONE RECORD_AUDIO
PHONE READ_PHONE_STATE

 READ_PHONE_NUMBERS
 CALL_PHONE
 ANSWER_PHONE_CALLS
 ADD_VOICEMAIL
 USE_SIP

SENSORS BODY_SENSORS
SMS SEND_SMS

 RECEIVE_SMS
 READ_SMS
 RECEIVE_WAP_PUSH
 RECEIVE_MMS

STORAGE READ_EXTERNAL_STORAGE
 WRITE_EXTERNAL_STORAGE

Table-16: Dangerous permissions and permission groups.

Special permissions

There are a couple of permissions that don't behave like normal and dangerous

permissions. SYSTEM_ALERT_WINDOW and WRITE_SETTINGS are particularly

sensitive, so most apps should not use them. If an app needs one of these

permissions, it must declare the permission in the manifest, and send an intent

requesting the user's authorization. The system responds to the intent by showing a

detailed management screen to the user.

https://developer.android.com/reference/android/Manifest.permission_group#CALL_LOG�
https://developer.android.com/reference/android/Manifest.permission#READ_CALL_LOG�
https://developer.android.com/reference/android/Manifest.permission#WRITE_CALL_LOG�
https://developer.android.com/reference/android/Manifest.permission#PROCESS_OUTGOING_CALLS�

133

4.7 How to View app's permissions

You can view all the permissions currently defined in the system using the Settings

app and the shell command adb shell pm list permissions. To use the Settings app,

go to Settings > Apps. Pick an app and scroll down to see the permissions that the

app uses. For developers, the adb '-s' option displays the permissions in a form

similar to how the user sees them:

$ adb shell pm list permissions -s

All Permissions:

Network communication: view Wi-Fi state, create Bluetooth connections, fullinternet

access, view network state

Your location: access extra location provider commands, fine (GPS) location,mock

location sources for testing, coarse (network-based) location

Services that cost you money: send SMS messages, directly call phone numbers

...

You can also use the adb -g option to grant all permissions automatically when

installing an app on an emulator or test device:

$ adb shell install -g MyApp.apk

Check your progress-2

• Which of the following is a protection level that affects third-party apps?

(A) Normal (B) Signature (C) Dangerous (D) All of these

• SEND_SMS is ____________ type of permission

(A) Normal (B) Signature (C) Dangerous (D) All of these

• READ_VOICEMAIL is ____________ type of permission

134

(A) Normal (B) Signature (C) Dangerous (D) All of these

d) SET_WALLPAPER is ____________ type of permission

(A) Normal (B) Signature (C) Dangerous (D) All of these

4.8 Let us sum up
In this unit you have learned about permission, different types of permissions, how to

define custom permission and various permission protection levels that affect third-

party apps.

4.9 Check your Progress: Possible Answers

1-a) The purpose of a permission is to protect the privacy of an Android user

1-b) False

1-c) <uses-permission>

1-d) (C)Either (A) or (B)

1-e) True

2-a) (D) All of these

2-b) (C) Dangerous

2-c) (B) Signature

2-d) (A) Normal

4.10 Further Reading

• https://developer.android.com/training/permissions/usage-notes

• https://developer.android.com/guide/topics/permissions/default-handlers

• https://developer.android.com/guide/topics/permissions/defining

135

4.11 Assignment

• Write detailed note on permissions

• Explain permissions for optional hardware features

• Explain Permission Protection levels in details

4.12 Activity

• Check the permissions used by different Apps installed in your Android Mobile

and remove any unnecessary permission granted.

